Python Opencv使用霍夫圆变换从二进制图像中检测圆

时间:2018-11-09 10:15:19

标签: python opencv image-processing hough-transform

我正在尝试将视频(阈值应用)分割为帧,然后尝试在图像中找到圆圈。但是我搜索到不可能将二进制图像转换为灰度图像。我搜索了霍夫圆,该方法只能拍摄灰度图像。霍夫线可以在二进制图像上工作,但霍夫圆不能。有什么建议在霍夫圆法中使用阈值图像吗?请帮我。

ps:我要添加代码和图像,目的是在阈值图像中找到圆圈。

while videoCapture.isOpened(): #Begins to detect the captures in video by frames

    ret, image = videoCapture.read()
    print("image capture opened")

    if ret == True:

        #rgb = cv2.cvtColor(image, cv2.COLOR_HLS2RGB)
        gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
        bgr = cv2.cvtColor(gray, cv2.COLOR_GRAY2BGR) #converting video color to gray

        print("gray scaled image\n")
        frameCounter = frameCounter + 1
        circles = cv2.HoughCircles(gray, cv2.HOUGH_GRADIENT, 1, 20, param1=71, param2=70, minRadius=0, maxRadius=0)
        if circles is not None:

            print("Hough Circle on each frame")
            circles = np.uint16(np.around(circles))
            for i in circles[0, :]:
                cv2.circle(bgr, (i[0],i[1]), i[2], (0, 255, 0), 2) #Outer circle in the image
                cv2.circle(bgr, (i[0],i[1]), 2, (0, 0, 255), 3) #inner circle center
                print("inner outer circle draw")

            cv2.imwrite(outputDir + "/%d.jpg" % (frameCounter), bgr) #Saving frame to the output directory
        else :
            print('Circle could not find')
            cv2.imwrite(outputDir + "/%d.jpg" % (frameCounter), bgr)  # Saving frame to the output directory

        print("image saved to directory")

        videoOutput.write(bgr)

        if(frameCounter > (frameLength-1)):
            endTime = time.time()
            videoCapture.release()
            videoOutput.release()
            print("Converting video took %d seconds." % (endTime-startTime))
            break
    else:
       break

**Binary Image (Threshold applied.)**

1 个答案:

答案 0 :(得分:0)

尝试使用convertTo而不是cvtColor。此示例有效:

cv::Mat image = imread("binary.bmp");
cv::Mat outImage;
image.convertTo(outImage, CV_8U);
imwrite("grayscale.bmp", outImage);

P.S .:您仍然必须使用HoughCircles的param1和param2参数,具体取决于您要检测的圆的“圆形”程度,在您的情况下,这实际上并不是一个完美的圆。开始检测图像中的硬币进行练习会容易得多。