使用此代码,出现错误!
import re
import sklearn
from sklearn import tree
from sklearn import preprocessing
from sklearn.preprocessing import OrdinalEncoder
from sklearn import tree
import numpy as np
# Dataset & labels
# features = [height, weight, style]
# styles = ['modern', 'classic']
features = [['1.65', '65', 'm'],
['1.55', '50', 'm'],
['1.76', '64', 'm'],
['1.72', '68', 'c'],
['1.73', '68', 'c'],
['1.68', '77', 'c']]
labels = ['Yellow dress',
'Red dress',
'Blue dress',
'Green dress',
'Purple dress',
'Orange dress']
# Decision Tree
clf = tree.DecisionTreeClassifier()
clf = clf.fit(features, labels)
# Returns the dress
height = input('Height: ')
weight = input('Weight: ')
style = input('Modern [m] or Classic [c]: ')
print(clf.predict([[height,weight,style]]))
错误:
return array(a, dtype, copy=False, order=order)
ValueError: could not convert string to float: 'm'
此错误与类型不同的数据有关,如何解决?
谢谢!