假设我在数据框中有两列,包括事件的概率和剩余时间。
prob time
0 0.975909 0 days 00:00:00
1 0.957819 0 days 01:00:00
2 0.937498 0 days 02:00:00
3 0.912779 0 days 03:00:00
4 0.894139 0 days 04:00:00
5 0.873184 0 days 05:00:00
6 0.847748 0 days 06:00:00
7 0.828572 0 days 07:00:00
8 0.807029 0 days 08:00:00
9 0.780847 0 days 09:00:00
10 0.761082 0 days 10:00:00
11 0.738855 0 days 11:00:00
12 0.711733 0 days 12:00:00
我想计算确切的时间和日期,例如,输入日期和时间以及概率,例如:
# Type the date of input data
i = datetime.datetime.now() #e.g. 2018-01-01 00:00:00
# Type the expected probability
exprob = 0.80
我需要的输出是以下结果: 用'exprob'(0.80)-> 0.80709找到最接近的概率,然后计算'i'+与0.80709相关的时间= 2018-01-01 08:00:00
答案 0 :(得分:0)
您可以使用idxmin
查找df['prob']
和exprob
之间的最小差的索引,然后找到Timedelta
并将其添加到日期{{1} }:
i
答案 1 :(得分:0)
使用argsort()
,我们可以像下面这样得到它。
input = 0.80
i = datetime.now()
next_time = i + df.ix[(df['prob']-input).abs().argsort()[:1]]['time']
完整的示例是
import pandas as pd
from datetime import datetime, timedelta
df = pd.DataFrame(columns = ['prob', 'time'])
df.loc[len(df)] = [0.975909, timedelta(hours=0, minutes=0, seconds=0)]
df.loc[len(df)] = [0.957819, timedelta(hours=1, minutes=0, seconds=0)]
df.loc[len(df)] = [0.937498, timedelta(hours=2, minutes=0, seconds=0)]
df.loc[len(df)] = [0.912779, timedelta(hours=3, minutes=0, seconds=0)]
df.loc[len(df)] = [0.894139, timedelta(hours=4, minutes=0, seconds=0)]
df.loc[len(df)] = [0.873184, timedelta(hours=5, minutes=0, seconds=0)]
df.loc[len(df)] = [0.847748, timedelta(hours=6, minutes=0, seconds=0)]
df.loc[len(df)] = [0.828572, timedelta(hours=7, minutes=0, seconds=0)]
df.loc[len(df)] = [0.807029, timedelta(hours=8, minutes=0, seconds=0)]
df.loc[len(df)] = [0.780847, timedelta(hours=9, minutes=0, seconds=0)]
df.loc[len(df)] = [0.761082, timedelta(hours=10, minutes=0, seconds=0)]
df.loc[len(df)] = [0.738855, timedelta(hours=11, minutes=0, seconds=0)]
df.loc[len(df)] = [0.711733, timedelta(hours=12, minutes=0, seconds=0)]
input = 0.80
i = datetime.now()
next_time = i + df.ix[(df['prob']-input).abs().argsort()[:1]]['time']
print(i)
print(next_time)