我有DataFrame
这样:
Name first_seen last_seen
0 Random guy 1 5/22/2016 18:12 5/22/2016 18:15
1 Random guy 2 5/22/2016 12:03 5/22/2016 12:03
2 Random guy 3 5/22/2016 21:06 5/22/2016 21:06
3 Random guy 4 5/22/2016 16:20 5/22/2016 16:20
4 Random guy 5 5/22/2016 14:46 5/22/2016 14:46
现在我必须添加名为column
的{{1}},当该人(Visit_period
)花费的最长时间落入时,[morning,afternoon,evening,night]
会占用row
个值中的一个:
- morning: 08:00 to 12:00 hrs
- afternoon: 12:00 to 16:00 hrs
- evening: 16:00 to 20:00 hrs
- night: 20:00 to 24:00 hrs
所以对于上面的五行输出将是这样的。
visit_period
evening
afternoon
night
evening
afternoon
我已经提到了花费的最长时间,因为有些人的first_seen
可能在14:30而last_seen
是16:21。我想分配值afternoon
,因为他在下午的板上花了30分钟,在晚上的板上花了21分钟。
我使用的是python 2.7。
答案 0 :(得分:1)
您可以使用apply
以下main_visit_period
功能尝试根据您列出的条件指定访问期限:
times = list(range(8, 21, 4))
labels = ['morning', 'afternoon', 'evening', 'night']
periods = dict(zip(times, labels))
给出:
{8: 'morning', 16: 'evening', 12: 'afternoon', 20: 'night'}
现在分配句点的功能:
def period(row):
visit_start = {'hour': row.first_seen.hour, 'min': row.first_seen.minute} # get hour, min of visit start
visit_end = {'hour': row.last_seen.hour, 'min': row.last_seen.minute} # get hour, min of visit end
for period_start, label in periods.items():
period_end = period_start + 4
if period_start <= visit_start['hour'] < period_end:
if period_start <= visit_end['hour'] < period_end or (period_end - visit_start['hour']) * 60 - visit_start['min'] > (visit_end['hour'] - period_end) * 60 + visit_end['min']:
return label
else:
return periods[period_end] # assign label of following period
最后.apply()
:
df['period'] = df.apply(period, axis=1)
得到:
Name first_seen last_seen period
0 Random guy 1 2016-05-22 18:12:00 2016-05-22 18:15:00 evening
1 Random guy 2 2016-05-22 12:03:00 2016-05-22 12:03:00 afternoon
2 Random guy 3 2016-05-22 21:06:00 2016-05-22 21:06:00 night
3 Random guy 4 2016-05-22 16:20:00 2016-05-22 16:20:00 evening
4 Random guy 5 2016-05-22 14:46:00 2016-05-22 14:46:00 afternoon
答案 1 :(得分:0)
你可以这样做:
start = pd.datetime(2016, 05, 22, 8, 00, 00)
d = ["Morning", "Afternoon", "Evening", "Night"]
def max_spent(fs, ls):
# Transform your date into timedelta in seconds:
sr = np.arange(8,25,4)*3600
fss = (fs-start).seconds
lss = (ls-start).seconds
# In which slot would it fit ?
fs_d = sr.searchsorted(fss)
ls_d = sr.searchsorted(lss)
# If it's not the same for both date:
if fs_d != ls_d:
# get the one with the biggest amount of time:
if fss - sr[fs_d - 1] > lss - sr[ls_d - 1]:
return d[fs_d-1]
else:
return d[ls_d-1]
else:
return d[ls_d-1]
然后,你只需:
df["visit_period"] = df.apply(lambda x: max_spent(x["first_seen"], x["last_seen"]), axis=1)
你得到:
df
Name first_seen last_seen visit_period
0 guy1 2016-05-22 18:12:00 2016-05-22 18:15:00 Evening
1 guy2 2016-05-22 12:03:00 2016-05-22 12:03:00 Afternoon
2 guy3 2016-05-22 21:06:00 2016-05-22 21:06:00 Night
3 guy4 2016-05-22 16:20:00 2016-05-22 16:20:00 Evening
4 guy5 2016-05-22 14:46:00 2016-05-22 14:46:00 Afternoon
5 guy6 2016-05-22 14:30:00 2016-05-22 16:21:00 Afternoon
使用pd.cut的早期版本,我认为如果不需要评估哪些列是最佳的,我认为更好:
# Transform your date into timedelta in seconds:
df["sec"] = map(lambda x: x.seconds, df.last_seen-start)
# Apply Cut on this column:
df["visit_period"] = pd.cut(df.sec, np.arange(8,25,4)*3600, labels=d)
我只在last_seen上完成了它,但您可以使用相应值创建另一个列来执行最长花费的时间,然后您可以在该列上执行此操作。
HTH