AttributeError:使用linregress时,“ float”对象没有属性“ shape”

时间:2018-11-08 00:57:44

标签: python scikit-learn linear-regression

我想使用LinearRegressionlinregress来计算InterceptX_Variable_1R_SquareSignificance_F,就像Excel中的回归分析一样。

当我使用此代码执行此操作时,没有任何错误。

from sklearn.linear_model import LinearRegression
import pandas as pd
import numpy as np
from scipy.stats import linregress
from decimal import *

def calculate_parameters():
    list_a=[['2018', '3', 'aa', 'aa', 93,1884.7746222667, 165.36153386251098], ['2018', '3', 'bb', 'bb', 62, 665.6392779848, 125.30386609565328], ['2018', '3', 'cc', 'cc', 89, 580.2259903521, 160.19280253775514]]
    df = pd.DataFrame(list_a)
    X = df.iloc[:, 5]
    y = df.iloc[:, 6]
    X1 = X.values.reshape(-1, 1)
    y1 = y.values.reshape(-1, 1)
    clf = LinearRegression()
    clf.fit(X1, y1)
    yhat = clf.predict(X1)
    para_Intercept = clf.intercept_[0]
    para_X_Variable_1 = clf.coef_[0][0]
    SS_Residual = sum((y1 - yhat) ** 2)
    SS_Total = sum((y1 - np.mean(y1)) ** 2)
    para_R_Square = 1 - (float(SS_Residual)) / SS_Total
    adjusted_r_squared = 1 - (1 - para_R_Square) * (len(y1) - 1) / (len(y1) - X1.shape[1] - 1)
    para_a = linregress(X, y)
    para_Significance_F = para_a[3]
    print("Intercept:"+str(para_Intercept))
    print("X_Variable_1:"+str(para_X_Variable_1))
    print("R_Square:" + str(para_R_Square[0]))
    print("Significance_F:" + str(para_Significance_F))

if __name__ == "__main__":
    calculate_parameters()

输出为:

  

拦截:133.10871357512195

     

X_Variable_1:0.016460552337949654

     

R_Square:0.3039426453800934

     

Significance_F:0.62825637186​​49847

但是实际上,list_a喜欢这个:

list_a = [['2018', '3', 'aa', 'aa', 93, Decimal('1884.7746222667'), 165.36153386251098],
          ['2018', '3', 'bb', 'bb', 62, Decimal('665.6392779848'), 125.30386609565328],
          ['2018', '3', 'cc', 'cc', 89, Decimal('580.2259903521'), 160.19280253775514]]

第六列是十进制类型。

当我更改list_a时,就像这样:

from sklearn.linear_model import LinearRegression
import pandas as pd
import numpy as np
from scipy.stats import linregress
from decimal import *

def calculate_parameters():
    # list_a=[['2018', '3', 'aa', 'aa', 93,1884.7746222667, 165.36153386251098], ['2018', '3', 'bb', 'bb', 62, 665.6392779848, 125.30386609565328], ['2018', '3', 'cc', 'cc', 89, 580.2259903521, 160.19280253775514]]
    list_a=[['2018', '3', 'aa', 'aa', 93,Decimal('1884.7746222667'), 165.36153386251098], ['2018', '3', 'bb', 'bb', 62, Decimal('665.6392779848'), 125.30386609565328], ['2018', '3', 'cc', 'cc', 89, Decimal('580.2259903521'), 160.19280253775514]]
    df = pd.DataFrame(list_a)
    X = df.iloc[:, 5]
    y = df.iloc[:, 6]
    X1 = X.values.reshape(-1, 1)
    y1 = y.values.reshape(-1, 1)
    clf = LinearRegression()
    clf.fit(X1, y1)
    yhat = clf.predict(X1)
    para_Intercept = clf.intercept_[0]
    para_X_Variable_1 = clf.coef_[0][0]
    SS_Residual = sum((y1 - yhat) ** 2)
    SS_Total = sum((y1 - np.mean(y1)) ** 2)
    para_R_Square = 1 - (float(SS_Residual)) / SS_Total
    adjusted_r_squared = 1 - (1 - para_R_Square) * (len(y1) - 1) / (len(y1) - X1.shape[1] - 1)
    para_a = linregress(X, y)
    para_Significance_F = para_a[3]
    print("Intercept:"+str(para_Intercept))
    print("X_Variable_1:"+str(para_X_Variable_1))
    print("R_Square:" + str(para_R_Square[0]))
    print("Significance_F:" + str(para_Significance_F))

if __name__ == "__main__":
    calculate_parameters()

错误是:

  

回溯(最近通话最近一次):

     

文件“ E:/test_opencv/MyTest.py”,第32行,在       compute_parameters()

     

文件“ E:/test_opencv/MyTest.py”,第24行,位于calculate_parameters中       para_a = linregress(X,y)

     

文件“ E:\ Anaconda3 \ lib \ site-packages \ scipy \ stats_stats_mstats_common.py”,行linregress       ssxm,ssxym,ssyxm,ssym = np.cov(x,y,bias = 1).flat

     

cov中的文件“ E:\ Anaconda3 \ lib \ site-packages \ numpy \ lib \ function_base.py”,第3085行       平均,w_sum =平均值(X,轴= 1,权重= w,返回=正确)

     

文件“ E:\ Anaconda3 \ lib \ site-packages \ numpy \ lib \ function_base.py”,平均行1163       如果scl.shape!= avg.shape:

     

AttributeError:“浮动”对象没有属性“ shape”

如何解决该错误?

1 个答案:

答案 0 :(得分:2)

您可以通过将X强制转换为浮点数来实现此目的:

para_a = linregress(X.astype(float), y)
>>> para_a
LinregressResult(slope=0.016460552337949654, intercept=133.10871357512195, rvalue=0.5513099358619372, pvalue=0.6282563718649847, stderr=0.024909849163985552)