Diamond-Square实现产生的价值过高

时间:2018-11-07 18:43:57

标签: javascript algorithm

我已经实现了Diamond-Square函数,该函数会生成一个高度图。乍一看,该实现似乎正常工作。

enter image description here

enter image description here

这些只是两个示例,但是已经可以看到输出值看起来总体上很高。只有很少的真正黑暗的价值。一世。 E.如果您查看此paper中的高度图(由菱形方块生成),您会发现它们不像我的高度图那样均匀。不同区域之间存在更多的偏移。有些地区看起来像火山口。

我无法确定此行为的原因是错误的参数化或实现。尽管网络上的示例实现确实有所不同,但我认为我已经掌握了基本思路。

我正在处理平面类型的数组。我传递给函数的参数是:

  • sideLength
    • 由于我有一个表示2D矩阵的平面数组,因此我通过了网格边的长度以进行进一步的计算。我在此处传递的值为 257
  • maxHeight
    • 可能的最高输出值。我在此处传递 255 ,因为稍后我将使用输出以便在画布上渲染高度图。
  • roughness
    • 这是我在平方步中使用的偏移值,以产生更多的随机高度偏移。在这里,我通常在 50 处获取一个值。

我正在调用Heightmap函数以获取输出:

/**
 * Creates a heightmap based on parameters passed.
 * @param {number} sideLength - Side length of a the resulting grid array. Diamond-Square can only have a size (2^n)+1.
 * @param {number} maxHeight - Max height value for the heightmap's values.
 * @param {number} roughness - A factor which is used as offset value for the heightmap. Defines the roughness of a heightmap.
 * @returns {Float32Array} - A flat `Float32Array` representing a 2D-grid with size `sideLength * sideLength`.
 */
static HeightMap(sideLength, maxHeight, roughness) {

    const n = Math.log(sideLength - 1) / Math.log(2);
    if (n < 0 || n % 1 != 0) {
        throw "Invalid side length in Diamond Square: Side Length has to be in range of `(2^n) + 1`.";
    }

    let gridArray = new Float32Array(sideLength * sideLength);
    this._initGrid(gridArray, sideLength, maxHeight);
    this._seed(gridArray, sideLength, roughness);

    return gridArray;
}

这里首先启动“网格”:

/**
 * Sets the initial corner values for a Diamond-Square grid.
 * @param {Float32Array} gridArray - An `Float32Array` with its values (ideally) set to `0`.
 * @param {number} sideLength - Side length of a the resulting grid array. Diamond-Square can only have a size `(2^n)+1`.
 * @param {number} maxHeight - Max height value for the heightmap's values.
 * @returns {Float32Array} - A flat `Float32Array` representing a 2D-grid with its NW, NE, SE and SW values initialized.
 */
static _initGrid(gridArray, sideLength, maxHeight) {

    gridArray[0] = MathHelper.RandomInt(0, maxHeight); // NW
    gridArray[sideLength - 1] = MathHelper.RandomInt(0, maxHeight); // NE
    gridArray[sideLength * sideLength - 1] = MathHelper.RandomInt(0, maxHeight); // SE
    gridArray[sideLength * sideLength - sideLength] = MathHelper.RandomInt(0, maxHeight); // SW

    return gridArray;
}

随后,HeightMap函数将调用_seed,这基本上是Diamond-Square循环:

/**
 * Performs the Diamond Square (aka. Midpoint displacement) algorithm on a given flat TypedArray.
 * @param {Float32Array} gridArray - An (Diamond-Square-initialized) `Float32Array`.
 * @param {number} sideLength - Side length of a the resulting grid array.
 * @param {number} roughness - A factor which is used as offset value for the heightmap. Defines the roughness of a heightmap.
 * @returns {Float32Array} - Returns a ready to use heightmap produced by the Diamond-Square algorithm.
 */
static _seed(gridArray, sideLength, roughness) {
    let step = Math.sqrt(gridArray.length) - 1;
    let size = Math.sqrt(gridArray.length) - 1;
    let currentRoughness = roughness;

    while (step / 2 >= 1) {

        let numSquares = (Math.pow(size, 2)) / (Math.pow(step, 2));
        let perRowSquares = Math.floor(Math.sqrt(numSquares));
        for (let i = 0; i < perRowSquares; i++) {
            for (let j = 0; j < perRowSquares; j++) {
                const nwIndex = this._getNWIndex(i, j, step, sideLength);
                const cornerValues = this._getCornerValues(nwIndex, gridArray, sideLength, step);
                this._diamondStep(nwIndex, cornerValues, gridArray, sideLength, step, currentRoughness);
                this._squareStep(nwIndex, cornerValues, gridArray, sideLength, step, currentRoughness);
            }
        }

        currentRoughness /= 2.0;
        step /= 2;
    }

    return gridArray;
}

注意我正在基于当前西北指标的索引来计算位置指标。为此,我有一个功能:

/**
 * Returns the array index for the north-west value for the current step.
 * @param {number} i - Current row, I guess.
 * @param {number} j - Current column, I guess.
 * @param {number} stepSize - Current step size.
 * @param {number} sideLength - Grid's side length.  
 * @returns {number} - Returns the index for current north-west value.
 */
static _getNWIndex(i, j, stepSize, sideLength) {
    return (i * (stepSize * sideLength)) + j * stepSize;
}

因为在菱形中使用了所有四个角值,并且在平方步中我也有一个功能:

/**
 * Return an array holding the north-west, north-east, south-west and south-east values for the current step.
 * @param {number} nwIndex - North-West index for current step. 
 * @param {Float32Array} gridArray - The corner values for the current step.  
 * @param {number} sideLength - Grid's side length. 
 * @param {number} stepSize - Current step size.  
 * @returns {Float32Array} - Returns the typed array the function of operating on.
 */
static _getCornerValues(nwIndex, gridArray, sideLength, stepSize) {
    return [
        gridArray[nwIndex], // NW
        gridArray[nwIndex + stepSize], // NE
        gridArray[nwIndex + stepSize * sideLength], // SW
        gridArray[nwIndex + stepSize + stepSize * sideLength] // SE
    ];
}

最后但并非最不重要的是,我有_diamondStep_sqaureStep

/**
 * Performs the Diamond Step by setting the center value for the current step.
 * @param {number} nwIndex - North-West index for current step.
 * @param {number[]} cornerValues - The corner values for the current step.
 * @param {Float32Array} gridArray - Array holding heightmap data. Function will write to this array.
 * @param {number} sideLength - Grid's side length. 
 * @param {number} stepSize - Current step size.
 * @returns {Float32Array} - Returns the typed array the function of operating on.
 */
static _diamondStep(nwIndex, cornerValues, gridArray, sideLength, stepSize, roughness) {

    // Center point. Calculated from "East - `stepSize / 2`"
    gridArray[(((nwIndex + stepSize * sideLength) + stepSize) - (stepSize * sideLength) / 2) - stepSize / 2]
        = (cornerValues[0] + cornerValues[1] + cornerValues[2] + cornerValues[3]) / 4 + (roughness * MathHelper.RandomInt(-1, 1));

    return gridArray;
}

/**
 * Performs the Square Step by setting the north, east, south and west values for the current step.
 * @param {number} nwIndex - North-West index for current step.
 * @param {number[]} cornerValues - The corner values for the current step. 
 * @param {Float32Array} gridArray - Array holding heightmap data. Function will write to this array. 
 * @param {number} sideLength - Grid's side length.  
 * @param {number} stepSize - Current step size. 
 * @param {number} roughness - Roughness factor for the current step.
 * @returns {Float32Array} - Returns the typed array the function of operating on.
 */
static _squareStep(nwIndex, cornerValues, gridArray, sideLength, stepSize, roughness) {

    const average = (cornerValues[0] + cornerValues[1] + cornerValues[2] + cornerValues[3]) / 4;
    const value = average + (roughness * MathHelper.RandomInt(-1, 1));

    // N
    gridArray[nwIndex + (stepSize / 2)] = value;
    // E
    gridArray[((nwIndex + stepSize * sideLength) + stepSize) - (stepSize * sideLength) / 2] = value;
    // S
    gridArray[(nwIndex + stepSize * sideLength) + stepSize / 2] = value;
    // W
    gridArray[(nwIndex + stepSize * sideLength) - (stepSize * sideLength) / 2] = value;

    return gridArray;
}

正如我之前提到的,实现似乎可行。我还是想知道整体的“白度”是由错误的参数化或错误的实现引起的吗?

这是一个工作的小提琴:

function HeightMap(sideLength, maxHeight, roughness) {

  const n = Math.log(sideLength - 1) / Math.log(2);
  if (n < 0 || n % 1 != 0) {
    throw "Invalid side length in Diamond Square: Side Length has to be in range of `(2^n) + 1`.";
  }

  let gridArray = new Float32Array(sideLength * sideLength);
  _initGrid(gridArray, sideLength, maxHeight);
  _seed(gridArray, sideLength, roughness);

  return gridArray;
}


function _initGrid(gridArray, sideLength, maxHeight) {

  gridArray[0] = RandomInt(0, maxHeight); // NW
  gridArray[sideLength - 1] = RandomInt(0, maxHeight); // NE
  gridArray[sideLength * sideLength - 1] = RandomInt(0, maxHeight); // SE
  gridArray[sideLength * sideLength - sideLength] = RandomInt(0, maxHeight); // SW

  return gridArray;
}


function _seed(gridArray, sideLength, roughness) {
  let step = Math.sqrt(gridArray.length) - 1;
  let size = Math.sqrt(gridArray.length) - 1;
  let currentRoughness = roughness;

  while (step / 2 >= 1) {

    let numSquares = (Math.pow(size, 2)) / (Math.pow(step, 2));
    let perRowSquares = Math.floor(Math.sqrt(numSquares));
    for (let i = 0; i < perRowSquares; i++) {
      for (let j = 0; j < perRowSquares; j++) {
        const nwIndex = _getNWIndex(i, j, step, sideLength);
        const cornerValues = _getCornerValues(nwIndex, gridArray, sideLength, step);
        _diamondStep(nwIndex, cornerValues, gridArray, sideLength, step, currentRoughness);
        _squareStep(nwIndex, cornerValues, gridArray, sideLength, step, currentRoughness);
      }
    }

    currentRoughness /= 2.0;
    step /= 2;
  }

  return gridArray;
}


function _diamondStep(nwIndex, cornerValues, gridArray, sideLength, stepSize, roughness) {
  gridArray[(((nwIndex + stepSize * sideLength) + stepSize) - (stepSize * sideLength) / 2) - stepSize / 2] =
    (cornerValues[0] + cornerValues[1] + cornerValues[2] + cornerValues[3]) / 4 + (roughness * RandomInt(-1, 1));

  return gridArray;
}

function _squareStep(nwIndex, cornerValues, gridArray, sideLength, stepSize, roughness) {

  const average = (cornerValues[0] + cornerValues[1] + cornerValues[2] + cornerValues[3]) / 4;
  const value = average + (roughness * RandomInt(-1, 1));

  // N
  gridArray[nwIndex + (stepSize / 2)] = value;
  // E
  gridArray[((nwIndex + stepSize * sideLength) + stepSize) - (stepSize * sideLength) / 2] = value;
  // S
  gridArray[(nwIndex + stepSize * sideLength) + stepSize / 2] = value;
  // W
  gridArray[(nwIndex + stepSize * sideLength) - (stepSize * sideLength) / 2] = value;

  return gridArray;
}

function _getCornerValues(nwIndex, gridArray, sideLength, stepSize) {
  return [
    gridArray[nwIndex], // NW
    gridArray[nwIndex + stepSize], // NE
    gridArray[nwIndex + stepSize * sideLength], // SW
    gridArray[nwIndex + stepSize + stepSize * sideLength] // SE
  ];
}

function _getNWIndex(i, j, stepSize, sideLength) {
  return (i * (stepSize * sideLength)) + j * stepSize;
}

function GenerateIterations(max) {
  let iterations = [];
  for (let n = 0; n < max; n++) {
    iterations.push(Math.pow(2, n) + 1);
  }
  return iterations;
}

function Grayscale(canvasName, data, rows, cols) {
  let canvas = document.getElementById(canvasName);
  let ctx = canvas.getContext("2d");

  let imageData = ctx.createImageData(cols, rows);

  for (let i = 0; i < data.length; i++) {
    const color = data[i];
    imageData.data[i * 4] = color;
    imageData.data[i * 4 + 1] = color;
    imageData.data[i * 4 + 2] = color;
    imageData.data[i * 4 + 3] = 255;
  }

  ctx.putImageData(imageData, 0, 0);
}

function RandomInt(min, max) {
  return Math.floor(Math.random() * (max - min + 1)) + min;
}

let terrainGrid = HeightMap(257, 255, 50);
Grayscale('grayscaleCanvas', terrainGrid, 257, 257);
.greyscaleCanvas {
  border: solid 1px black;
}
<canvas id="grayscaleCanvas" class="greyscaleCanvas" width="257px" height="257px"></canvas>

1 个答案:

答案 0 :(得分:3)

因此,基于对算法的工作原理的理解,我对代码进行了一些重新设计。完全有可能仍然无法正常工作,但我认为无论如何您都可以使用此代码。

根据对维基百科上钻石方块步骤的理解,我认为您的算法中也发现了一些问题:

function HeightMap(sideLength, maxHeight, roughness) {

  const n = Math.log(sideLength - 1) / Math.log(2);
  if (n < 0 || n % 1 != 0) {
    throw "Invalid side length in Diamond Square: Side Length has to be in range of `(2^n) + 1`.";
  }

  let gridArray = new Array(sideLength);
  for (var i = 0; i < gridArray.length; i++) {
    gridArray[i] = new Float32Array(sideLength);
    }
  gridArray = _initGrid(gridArray, sideLength, maxHeight);
    gridArray = _seed(gridArray, sideLength, roughness);
  return gridArray;
}


function _initGrid(gridArray, sideLength, maxHeight) {

  gridArray[0][0] = RandomInt(0, maxHeight); // NW
  gridArray[0][sideLength-1] = RandomInt(0, maxHeight); // NE
  gridArray[sideLength-1][sideLength-1] = RandomInt(0, maxHeight); // SE
  gridArray[sideLength-1][0] = RandomInt(0, maxHeight); // SW

  return gridArray;
}


function _seed(gridArray, sideLength, roughness) {
  let step = sideLength - 1;
  let size = sideLength - 1;
  let currentRoughness = roughness;

    let run_num = 0
  while (step / 2 >= 1) {
    console.log(run_num)
        run_num = run_num + 1
    let numSquares = Math.pow(size, 2) / Math.pow(step, 2);
    let perRowSquares = Math.floor(Math.sqrt(numSquares));
    for (let i = 0; i < perRowSquares; i++) {
      for (let j = 0; j < perRowSquares; j++) {
        row = i*step
        col = j*step
        const squareCornerValues = _getSquareCornerValues(gridArray, row, col, step)
        gridArray = _diamondStep(squareCornerValues, row, col, step, gridArray, currentRoughness);
        gridArray = _squareStep(row, col, step, gridArray, sideLength, currentRoughness)
       // _squareStep(diamondMidPoints, gridArray, step, currentRoughness);
      }
    }

    currentRoughness /= 2.0;
    step /= 2;
  }
  return gridArray;
}


function _diamondStep(squareCornerValues, i, j, step, gridArray, currentRoughness) {
  gridArray[row+step/2][col+step/2] = (squareCornerValues[0] + squareCornerValues[1] + squareCornerValues[2] + squareCornerValues[3] ) / 4  + (currentRoughness * RandomInt(-1, 1));
  return gridArray;
}

function _squareStep(row, col, step, gridArray, sideLength, currentRoughness) {

  let diamondMidPoints = [[row, col+step/2], //top
                                                [row+step/2, col], //left
                            [row+step, col+step/2], //right
                            [row+step/2, col+step] //bottom
                             ];
  for (let z = 0; z < diamondMidPoints.length; z++){
    corners = _get_diamond_corners(diamondMidPoints[z], step, sideLength, gridArray);
    gridArray[diamondMidPoints[z][0]][diamondMidPoints[z][1]] = (corners[0] + corners[1] + corners[2] + corners[3]) /4  + (currentRoughness * RandomInt(-1, 1));
  }

  return gridArray;
}

function _getSquareCornerValues(gridArray, row, col, step) {
  return [
    gridArray[row][col], // NW
    gridArray[row][col+step], // NE
    gridArray[row+step][col], // SW
    gridArray[row+step][col+step] // SE
  ];
}

function _get_diamond_corners(diamondMidPoints, step, sideLength, gridArray){
    row = diamondMidPoints[0];
  col = diamondMidPoints[1];
  top_coord = [(row  - step/2 + sideLength) % sideLength, col];
  left_coord = [row, (col - step/2 + sideLength) % sideLength];
  right_coord = [row, (col + step/2 + sideLength) % sideLength];
  bottom_coord = [(row + step/2 + sideLength) % sideLength, col];
  return [gridArray[top_coord[0]][top_coord[1]],
                gridArray[left_coord[0]][left_coord[1]],
          gridArray[right_coord[0]][right_coord[1]],
          gridArray[bottom_coord[0]][bottom_coord[1]]
             ];
}

function Grayscale(canvasName, data, rows, cols) {
  let canvas = document.getElementById(canvasName);
  let ctx = canvas.getContext("2d");

  let imageData = ctx.createImageData(cols, rows);

  for (let i = 0; i < data.length; i++) {
    const color = data[i];
    imageData.data[i * 4] = color;
    imageData.data[i * 4 + 1] = color;
    imageData.data[i * 4 + 2] = color;
    imageData.data[i * 4 + 3] = 255;
  }

  ctx.putImageData(imageData, 0, 0);
}

function RandomInt(min, max) {
  return Math.floor(Math.random() * (max - min + 1)) + min;
}


let terrainGrid = HeightMap(257, 255, 50);
terrainList = []
for (let q=0; q < 257; q++) {
  terrainList.push.apply(terrainList, terrainGrid[q])
}
Grayscale('grayscaleCanvas', terrainList, 257, 257);

我做的第一件事是将其更改为使用二维数组索引。这样可以更轻松地实现平方步长求平均值(我能够更简单地环绕矩阵的边缘)。

我还更改了它,以使用更简单的数组中的实际行和列值,而不是块坐标。

我认为您最初并未正确计算平方步长。您使用的拐角与菱形台阶有关,但是您只是对平方台阶求平均值,而不是根据计算的中点值和拐角的相关子集找到平均值(请参阅Wikipedia菱形正方形图像以了解哪些内容)。我的意思是。)

这里是所有内容的JSFiddle,希望这是您想要的更多东西。 (请注意:如果没有什么习惯性的操作,那是因为我对Java语言的了解不强):https://jsfiddle.net/z6so4xyc/15/