如何将深度学习模型数据传递给Spark中的映射函数

时间:2018-11-07 10:25:11

标签: apache-spark keras pyspark deep-learning

我有一个非常简单的用例,其中我使用sc.binaryFiles方法从s3中读取了rdd的大量图像。创建此RDD后,我会将rdd中的内容传递给vgg16功能提取器函数。因此,在此我将需要用于完成特征提取的模型数据,因此我将模型数据放入广播变量中,然后访问每个映射函数中的值。下面是代码:-

s3_files_rdd = sc.binaryFiles(RESOLVED_IMAGE_PATH)

s3_files_rdd.persist()

model_data = initVGG16()
broadcast_model = sc.broadcast(model_data)

features_rdd = s3_files_rdd.mapPartitions(extract_features_)

response_rdd = features_rdd.map(lambda x: (x[0], write_to_s3(x, OUTPUT, FORMAT_NAME)))

extract_features_方法:-

def extract_features_(xs):
    model_data = initVGG16()
    for k, v in xs:
        yield k, extract_features2(model_data,v)

extract_features方法:-

from keras.preprocessing import image
from keras.applications.vgg16 import VGG16
from keras.models import Model
from io import BytesIO
from keras.applications.vgg16 import preprocess_input
def extract_features(model,obj):
    try:
        print('executing vgg16 feature extractor...')
        img = image.load_img(BytesIO(obj), target_size=(224, 224,3))
        img_data = image.img_to_array(img)
        img_data = np.expand_dims(img_data, axis=0)
        img_data = preprocess_input(img_data)
        vgg16_feature = model.predict(img_data)[0]
        print('++++++++++++++++++++++++++++',vgg16_feature.shape)
        return vgg16_feature
    except Exception as e:
        print('Error......{}'.format(e.args))
        return []

写入s3方法:-

def write_to_s3(rdd, output_path, format_name):
    file_path = rdd[0]
    file_name_without_ext = get_file_name_without_ext(file_name)
    bucket_name = output_path.split('/', 1)[0]

    final_path = 'deepak' + '/' + file_name_without_ext + '.' + format_name

    LOGGER.info("Saving to S3....")
    cci = cc.get_interface(bucket_name, ACCESS_KEY=os.environ.get("AWS_ACCESS_KEY_ID"),
                           SECRET_KEY=os.environ.get("AWS_SECRET_ACCESS_KEY"), endpoint_url='https://s3.amazonaws.com')
    response = cci.upload_npy_array(final_path, rdd[1])
    return response

在write_to_s3方法内,我正在获取RDD,提取要保存的密钥名称并进行存储。然后使用名为Cottoncandy的库直接保存RDD内容(在我的情况下为numpy数组),而不是保存任何中间文件。

我遇到以下错误:-

127_0010/container_1541576150127_0010_01_000001/pyspark.zip/pyspark/cloudpickle.py", line 600, in save_reduce
    save(state)
  File "/usr/lib64/python2.7/pickle.py", line 286, in save
    f(self, obj) # Call unbound method with explicit self
  File "/usr/lib64/python2.7/pickle.py", line 655, in save_dict
    self._batch_setitems(obj.iteritems())
  File "/usr/lib64/python2.7/pickle.py", line 687, in _batch_setitems
    save(v)
  File "/usr/lib64/python2.7/pickle.py", line 306, in save
    rv = reduce(self.proto)
TypeError: can't pickle thread.lock objects
Traceback (most recent call last):
  File "one_file5.py", line 98, in <module>
    run()
  File "one_file5.py", line 89, in run
    LOGGER.info('features_rdd rdd created,...... %s',features_rdd.count())    
  File "/mnt/yarn/usercache/hadoop/appcache/application_1541576150127_0010/container_1541576150127_0010_01_000001/pyspark.zip/pyspark/rdd.py", line 1041, in count
  File "/mnt/yarn/usercache/hadoop/appcache/application_1541576150127_0010/container_1541576150127_0010_01_000001/pyspark.zip/pyspark/rdd.py", line 1032, in sum
  File "/mnt/yarn/usercache/hadoop/appcache/application_1541576150127_0010/container_1541576150127_0010_01_000001/pyspark.zip/pyspark/rdd.py", line 906, in fold
  File "/mnt/yarn/usercache/hadoop/appcache/application_1541576150127_0010/container_1541576150127_0010_01_000001/pyspark.zip/pyspark/rdd.py", line 809, in collect
  File "/mnt/yarn/usercache/hadoop/appcache/application_1541576150127_0010/container_1541576150127_0010_01_000001/pyspark.zip/pyspark/rdd.py", line 2455, in _jrdd
  File "/mnt/yarn/usercache/hadoop/appcache/application_1541576150127_0010/container_1541576150127_0010_01_000001/pyspark.zip/pyspark/rdd.py", line 2388, in _wrap_function
  File "/mnt/yarn/usercache/hadoop/appcache/application_1541576150127_0010/container_1541576150127_0010_01_000001/pyspark.zip/pyspark/rdd.py", line 2374, in _prepare_for_python_RDD
  File "/mnt/yarn/usercache/hadoop/appcache/application_1541576150127_0010/container_1541576150127_0010_01_000001/pyspark.zip/pyspark/serializers.py", line 464, in dumps
  File "/mnt/yarn/usercache/hadoop/appcache/application_1541576150127_0010/container_1541576150127_0010_01_000001/pyspark.zip/pyspark/cloudpickle.py", line 704, in dumps
  File "/mnt/yarn/usercache/hadoop/appcache/application_1541576150127_0010/container_1541576150127_0010_01_000001/pyspark.zip/pyspark/cloudpickle.py", line 162, in dump
pickle.PicklingError: Could not serialize object: TypeError: can't pickle thread.lock objects.

当我注释掉features_rdd的代码部分时,程序会正常运行,这意味着features_rdd部分中的内容不正确。不知道我在这里做错了什么。

我正在4名执行者的情况下在AWS EMR中运行该程序。 执行者核心7 执行器RAM 8GB Spark版本2.2.1

1 个答案:

答案 0 :(得分:1)

mapPartitions替换当前代码:

def extract_features_(xs):
    model_data = initVGG16()
    for k, v in xs:
        yield k, extract_features(model_data, v)

features_rdd = s3_files_rdd.mapPartitions(extract_features_)