这样做时:
int x = 100;
int result = 1;
for (int i = 1; i < (x + 1); i++) {
result = (result * i);
}
System.out.println(result);
这显然是因为结果对于整数而言太大了,但我习惯得到溢出的大负数,而不是0。
提前致谢!
当我切换到这个时:
int x = 100;
int result = 1;
for (int i = 1; i < (x + 1); i++) {
result = (result * i);
System.out.println(result);
}
我得到this。
答案 0 :(得分:23)
有50个偶数,介于1到100之间。这意味着阶乘是2的倍数至少50倍,换句话说,作为二进制数,最后50位将是0.(实际上它更像偶数第二偶数是2 * 2的倍数等)< / p>
public static void main(String... args) {
BigInteger fact = fact(100);
System.out.println("fact(100) = " + fact);
System.out.println("fact(100).longValue() = " + fact.longValue());
System.out.println("fact(100).intValue() = " + fact.intValue());
int powerOfTwoCount = 0;
BigInteger two = BigInteger.valueOf(2);
while (fact.compareTo(BigInteger.ZERO) > 0 && fact.mod(two).equals(BigInteger.ZERO)) {
powerOfTwoCount++;
fact = fact.divide(two);
}
System.out.println("fact(100) powers of two = " + powerOfTwoCount);
}
private static BigInteger fact(long n) {
BigInteger result = BigInteger.ONE;
for (long i = 2; i <= n; i++)
result = result.multiply(BigInteger.valueOf(i));
return result;
}
打印
fact(100) = 93326215443944152681699238856266700490715968264381621468592963895217599993229915608941463976156518286253697920827223758251185210916864000000000000000000000000
fact(100).longValue() = 0
fact(100).intValue() = 0
fact(100) powers of two = 97
这意味着对于事实(100)
的最低位,97位整数将为0事实上,对于事实(n),2的幂数非常接近于n。事实上(10000)有9995的两个权力。这是因为它大约是1/2次幂的总和,总和接近n
。即,每第二个数字甚至是n / 2,每第4个数字的额外功率为2(+ n / 4),每8个数字的额外功率(+ n / 8)等接近n
作为总和。
答案 1 :(得分:21)
大负数是溢出到某个范围的值; factorial(100)
末尾有超过32个二进制零,因此将其转换为整数会产生零。
答案 2 :(得分:8)
要了解原因,我们可以观察到阶乘的素数因子化。
fac( 1) = 1 = 2^0
fac( 2) = 2 = 2^1
fac( 3) = 2 * 3 = 2^1 * 3
fac( 4) = 2 * 2 * 2 * 3 = 2^3 * 3
fac( 5) = ... = 2^3 * 3 * 5
fac( 6) = ... = 2^4 * 3^2 * 5
fac( 7) = ... = 2^4 * ...
fac( 8) = ... = 2^7 * ...
fac( 9) = ... = 2^7 * ...
fac(10) = ... = 2^8 * ...
fac(11) = ... = 2^8 * ...
...
fac(29) = ... = 2^25 * ...
fac(30) = ... = 2^26 * ...
fac(31) = ... = 2^26 * ...
fac(32) = ... = 2^31 * ...
fac(33) = ... = 2^31 * ...
fac(34) = ... = 2^32 * ... <===
fac(35) = ... = 2^32 * ...
fac(36) = ... = 2^34 * ...
...
fac(95) = ... = 2^88 * ...
fac(96) = ... = 2^93 * ...
fac(97) = ... = 2^93 * ...
fac(98) = ... = 2^94 * ...
fac(99) = ... = 2^94 * ...
fac(100)= ... = 2^96 * ...
2
的指数是base-2视图中的尾随零的数量,因为所有其他因子都是奇数,因此在产品的最后一个二进制数字中贡献1
。
类似的方案也适用于其他素数,因此我们可以轻松计算fac(100)
的因子分解:
fac(100) = 2^96 * 3^48 * 5^24 * 7^16 * 11^9 * 13^7 * 17^5 * 19^5 * 23^4 *
29^3 * 31^2 * 37^2 * 41^2 * 43^2 * 47^2 *
53 * 59 * 61 * 67 * 71 * 73 * 79 * 83 * 89 * 97
因此,如果我们的计算机将数字存储在基数3中并且具有48个特里数,fac(100)
将为0(同样为fac(99)
,但fac(98)
则不会: - )
答案 3 :(得分:6)
好问题 - 答案是:
33的因子(由于负值)是-2147483648
,0x80000000
,或0xFFFFFFFF80000000
,如果采用64位。乘以34(下一个成员)将得到0xFFFFFFE600000000
的长值,当转换为int时,将为您提供0x00000000
。
显然,从那一点开始,你将保持0。
答案 4 :(得分:2)
使用递归和BigIntegers的简单解决方案:
public static BigInteger factorial(int num){
if (num<=1)
return BigInteger.ONE;
else
return factorial(num-1).multiply(BigInteger.valueOf(num));
}
输出:
93326215443944152681699238856266700490715968264381621468592963895217599993229915608941463976156518286253697920827223758251185210916864000000000000000000000000
答案 5 :(得分:0)
(找到here,稍微调整 以适应问题)
public static void main(String[] args) {
BigInteger fact = BigInteger.valueOf(1);
for (int i = 1; i <= 100; i++)
fact = fact.multiply(BigInteger.valueOf(i));
System.out.println(fact);
}
答案 6 :(得分:0)
Java中的BigInteger类。 BigInteger类用于数学运算,该运算涉及非常大的整数计算,超出所有可用原始数据类型的限制。
要计算非常大的数字,我们可以使用 BigInteger
例如,如果我们要计算45的阶乘, 答案= 119622220865480194561963161495657715064383733760000000000
static void extraLongFactorials(int n) {
BigInteger fact = BigInteger.ONE;
for(int i=2; i<=n; i++){
fact = fact.multiply(BigInteger.valueOf(i));
}
System.out.println(fact);
}
BigInteger的主要方法是BigInteger.ONE,BigInteger.ZERO,BigInteger.TEN,BigInteger.ValueOf()
答案 7 :(得分:0)
import java.util.*;
import java.math.*;
public class BigInteger_Factorial {
public static void main(String args []){
Scanner s = new Scanner(System.in);
BigInteger x,i,fac = new BigInteger("1");
x = s.nextBigInteger();
for(i=new BigInteger("1"); i.compareTo(x)<=0; i=i.add(BigInteger.ONE)){
fac = fac.multiply((i));
}
System.out.println(fac);
}
}
输出100作为输入:
93326215443944152681699238856266700490715968264381621468592963895217599993229915608941463976156518286253697920827223758251185210916864000000000000000000000000
输出图像:
答案 8 :(得分:0)
package test2;
import java.math.BigInteger;
import java.util.Scanner;
public class Factorial extends Big {
public static void main(String args []){
int x,fact=1,i ;
Scanner sc = new Scanner(System.in);
System.out.println("press any dight and 0 to exit");
while (sc.nextInt()!=0)
{
System.out.println("Enter the values ");
x=sc.nextInt();
if(x<26)
{
for( i=1;i<=x;i++)
{ fact = fact*i; }
System.out.println("Factorial of "+x + "is "+ fact );
fact=1;
}
else
{
System.out.println("In else big....");
BigInteger k=fact(x);
System.out.println("The factorial of "+x+"is "+k);
System.out.println("RESULT LENGTH\n"+k.toString().length());
}
System.out.println("press any dight and 0 to exit");
}
System.out.println("thanks....");
}
}
//----------------------------------------------------//
package test2;
import java.math.BigInteger;
public class Big {
public static void main(String... args) {
BigInteger fact = fact(100);
System.out.println("fact(100) = " + fact);
System.out.println("fact(100).longValue() = " + fact.longValue());
System.out.println("fact(100).intValue() = " + fact.intValue());
int powerOfTwoCount = 0;
BigInteger two = BigInteger.valueOf(2);
while (fact.compareTo(BigInteger.ZERO) > 0 && fact.mod(two).equals(BigInteger.ZERO)) {
powerOfTwoCount++;
fact = fact.divide(two);
}
System.out.println("fact(100) powers of two = " + powerOfTwoCount);
}
public static BigInteger fact(long n) {
BigInteger result = BigInteger.ONE;
for (long i = 2; i <= n; i++)
result = result.multiply(BigInteger.valueOf(i));
return result;
}
}
答案 9 :(得分:-1)
肯定是溢出,你可以尝试双倍,64位长整数可能太小了