我正在尝试将熊猫数据框导出到现有的sqlite数据库。该代码正在运行,并显示“进程已完成,退出代码为0”消息,但sqlite表仍然为空:
import sqlalchemy
from sqlalchemy import create_engine
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, Numeric, DateTime
from sqlalchemy.orm import sessionmaker
from datetime import datetime
import pandas as pd
Base = declarative_base()
engine = create_engine('sqlite:///V:\\PYTHON\\test\\test.db')
Base.metadata.create_all(engine)
# Set up of the table in db and the file to import
fileToRead = r'V:\PYTHON\test\data.csv'
tableToWriteTo = 'timeseries_values'
# Panda to create a dataframe with ; as separator.
df = pd.read_csv(fileToRead, sep=';', decimal=',', parse_dates=['Date'], dayfirst=True)
df.to_sql(con=engine, name='timeseries_values', if_exists='replace')
metadata = sqlalchemy.schema.MetaData(bind=engine, reflect=True)
table = sqlalchemy.Table(tableToWriteTo, metadata, autoload=True)
# Open the session
Session = sessionmaker(bind=engine)
session = Session()
# Insert the dataframe into the database in one bulk
conn.execute(table.insert(), listToWrite)
# Commit the changes
session.commit()
# Close the session
session.close()
以下脚本确实可以工作,但是我也需要其他脚本才能工作,尤其是由于“ if_exists ='replace'”部分:
import sqlalchemy
from sqlalchemy import create_engine
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, Numeric, DateTime
from sqlalchemy.orm import sessionmaker
from datetime import datetime
import pandas as pd
Base = declarative_base()
# Declaration of the class in order to write into the database. This structure is standard and should align with SQLAlchemy's doc.
class Timeseries_Values(Base):
__tablename__ = 'Timeseries_Values'
Date = Column(DateTime, primary_key=True)
ID = Column(Integer, primary_key=True)
Value = Column(Numeric)
@property
def __repr__(self):
return "(Date='%s', ProductID='%s', Value='%s')" % (self.Date, self.ProductID, self.Value)
def main(fileToRead):
# Set up of the table in db and the file to import
fileToRead = r'V:\PYTHON\test\data.csv'
tableToWriteTo = 'timeseries_values'
# Panda to create a dataframe with ; as separator.
df = pd.read_csv(fileToRead, sep=';', decimal=',', parse_dates=['Date'], dayfirst=True)
# add a new column "LocationID" with the value of 1 for all entries
#df['LocationID'] = 1
# only use three columns of entire csv file, show only first 5 rows
#df = df.loc[0:5, ['Date', 'DE', 'LocationID']]
df.columns = ['Date', 'ProductID', 'Value']
# The orient='records' is the key of this, it allows to align with the format mentioned in the doc to insert in bulks.
listToWrite = df.to_dict(orient='records')
# Set up of the engine to connect to the database
# the urlquote is used for passing the password which might contain special characters such as "/"
engine = create_engine('sqlite:///V:\\PYTHON\\test\\test.db')
conn = engine.connect()
metadata = sqlalchemy.schema.MetaData(bind=engine, reflect=True)
table = sqlalchemy.Table(tableToWriteTo, metadata, autoload=True)
# Open the session
Session = sessionmaker(bind=engine)
session = Session()
# Insert the dataframe into the database in one bulk
conn.execute(table.insert(), listToWrite)
# Commit the changes
session.commit()
# Close the session
session.close()
请问我在这里想念什么?