我想对原始数据帧中的row 6
做条件选择
原始数据框:
B1 B2 B3 B4 BCS ULCA MIMO
3 26A 1A 0,1 . 1A
4 28A 1A 0,1 . 1A
5 19A 3A 1A 0 . 1A, 3A
6 3A 1A 0,1 . 1A, 3A, 1A-3A
步骤1。将行延伸BCS
和MIMO
B1 B2 B3 B4 BCS ULCA MIMO
4 26A 1A 0 . 1A
5 26A 1A 1 . 1A
6 28A 1A 0 . 1A
7 28A 1A 1 . 1A
8 19A 3A 1A 0 . 1A
9 19A 3A 1A 0 . 3A
10 3A 1A 0 . 1A
11 3A 1A 1 . 1A
12 3A 1A 0 . 3A
13 3A 1A 1 . 3A
14 3A 1A 0 . 1A-3A
15 3A 1A 1 . 1A-3A
Step.2然后将B1-B4
与MIMO
进行比较(如果相等):然后将4
放入新的列(Bx_m)中,如果不相等,则将2
< / p>
cols = ['B1','B2','B3','B4']
arr = np.where(b[cols].eq(b['MIMO'], axis=0), '4','2')
b = b.join(pd.DataFrame(arr, columns=cols, index=b.index).add_suffix('_m'))
B1 B2 B3 B4 BCS ULCA MIMO B1_m B2_m B3_m B4_m
4 26A 1A 0 . 1A 2 4 2 2
5 26A 1A 1 . 1A 2 4 2 2
6 28A 1A 0 . 1A 2 4 2 2
7 28A 1A 1 . 1A 2 4 2 2
8 19A 3A 1A 0 . 1A 2 2 4 2
9 19A 3A 1A 0 . 3A 2 4 2 2
10 3A 1A 0 . 1A 2 4 2 2
11 3A 1A 1 . 1A 2 4 2 2
12 3A 1A 0 . 3A 4 2 2 2
13 3A 1A 1 . 3A 4 2 2 2
14 3A 1A 0 . 1A-3A 2 2 2 2
15 3A 1A 1 . 1A-3A 2 2 2 2
但这是原始数据帧中带有row 6
的格式的特殊要求。
规则:
MIMO
中的每个值分别在对应的Bx_m
中填入4个
如果同时存在两个值(1A-3A
),则只需同时在Bx_m
中填写4
即:
如果值格式类似于1A, 3A, 1A-3A
列中的MIMO
(而不是1A, 3A
)
然后输出只需要将1A-3A
保留在Step.1中
并在Step.2中同时在B1_m和B2_n列中填写4
原始数据:
B1 B2 B3 B4 BCS ULCA MIMO
6 3A 1A 0,1 . 1A, 3A, 1A-3A
原始输出(想要更改):( 6行)
B1 B2 B3 B4 BCS ULCA MIMO B1_m B2_m B3_m B4_m
10 3A 1A 0 . 1A 2 4 2 2
11 3A 1A 1 . 1A 2 4 2 2
12 3A 1A 0 . 3A 4 2 2 2
13 3A 1A 1 . 3A 4 2 2 2
14 3A 1A 0 . 1A-3A 2 2 2 2
15 3A 1A 1 . 1A-3A 2 2 2 2
要求目标:(仅2行。B1_m和B2_m均填写4
)
B1 B2 B3 B4 BCS ULCA MIMO B1_m B2_m B3_m B4_m
14 3A 1A 0 . 1A-3A 4 4 2 2
15 3A 1A 1 . 1A-3A 4 4 2 2
请帮助我解决问题。谢谢。
df = pd.concat([b1.set_index('index'),b2.set_index('index')]).sort_index()
print(df)
B1 B2 B3 B4 BCS ULCA MIMO B1_m B2_m B3_m B4_m
index
0 42A 19A 0 . . 2 2 2 2
1 18A 1A 0 . 1A 2 4 2 2
10 3A 1A 0 . 3A 4 2 2 2
100 41A 28A 3A 0 . 3A 2 2 4 2
101 41A 28A 3A 0 . 41A 4 2 2 2
102 42A 28A 3A 0 . 3A 2 2 4 2
103 42A 41A 3A 0 . 3A 2 2 4 2
104 42A 41A 3A 0 . 41A 2 4 2 2
105 41C 3A 0 . 3A 2 4 2 2
106 41C 3A 0 . 41C 4 2 2 2
107 41C 3A 0 . 3A-41C 4 4 2 2
108 42C 3A 0 . 3A 2 4 2 2
109 42C 41A 0 . 41A 2 4 2 2
11 3A 1A 1 . 3A 4 2 2 2
答案 0 :(得分:1)
使用:
from itertools import product
#convert index to strings and then to column for last sorting by index - proper ordering
df = df.rename(str).reset_index()
#check if - in column MIMO
m = df['MIMO'].str.contains('-').copy()
#solution process only rows with - filtered by boolene indexing
df1 = df[m].fillna('').apply(lambda x: x.str.split(',\s*'))
b = pd.DataFrame([j for i in df1.values for j in product(*i)], columns=df1.columns)
#remove non - rows
b1 = b[b['MIMO'].str.contains('-')].copy()
print (b1)
index B1 B2 B3 B4 BCS ULCA MIMO
2 6 3A 1A 0 . 1A-3A
5 6 3A 1A 1 . 1A-3A
#check substrings per rows
b1['B1_m'] = np.where([i in j for i, j in zip(b1['B1'], b1['MIMO'])], '4', '2')
b1['B2_m'] = np.where([i in j for i, j in zip(b1['B2'], b1['MIMO'])], '4', '2')
b1['B3_m'] = np.where(b1['B3'] == b1['MIMO'], '4', '2')
b1['B4_m'] = np.where(b1['B4'] == b1['MIMO'], '4', '2')
print (b1)
index B1 B2 B3 B4 BCS ULCA MIMO B1_m B2_m B3_m B4_m
2 6 3A 1A 0 . 1A-3A 4 4 2 2
5 6 3A 1A 1 . 1A-3A 4 4 2 2
#processes rows with no -
df2 = df[~m].fillna('').apply(lambda x: x.str.split(',\s*'))
b2 = pd.DataFrame([j for i in df2.values for j in product(*i)], columns=df2.columns)
print (b2)
index B1 B2 B3 B4 BCS ULCA MIMO
0 3 26A 1A 0 . 1A
1 3 26A 1A 1 . 1A
2 4 28A 1A 0 . 1A
3 4 28A 1A 1 . 1A
4 5 19A 3A 1A 0 . 1A
5 5 19A 3A 1A 0 . 3A
cols = ['B1','B2','B3','B4']
arr = np.where(b2[cols].eq(b2['MIMO'], axis=0), '4','2')
b2 = b2.join(pd.DataFrame(arr, columns=cols, index=b2.index).add_suffix('_m'))
print (b2)
index B1 B2 B3 B4 BCS ULCA MIMO B1_m B2_m B3_m B4_m
0 3 26A 1A 0 . 1A 2 4 2 2
1 3 26A 1A 1 . 1A 2 4 2 2
2 4 28A 1A 0 . 1A 2 4 2 2
3 4 28A 1A 1 . 1A 2 4 2 2
4 5 19A 3A 1A 0 . 1A 2 2 4 2
5 5 19A 3A 1A 0 . 3A 2 4 2 2
#join together, convert index values to integers and sorting
df = pd.concat([b1.set_index('index'), b2.set_index('index')]).rename(int).sort_index()
print (df)
B1 B2 B3 B4 BCS ULCA MIMO B1_m B2_m B3_m B4_m
index
3 26A 1A 0 . 1A 2 4 2 2
3 26A 1A 1 . 1A 2 4 2 2
4 28A 1A 0 . 1A 2 4 2 2
4 28A 1A 1 . 1A 2 4 2 2
5 19A 3A 1A 0 . 1A 2 2 4 2
5 19A 3A 1A 0 . 3A 2 4 2 2
6 3A 1A 0 . 1A-3A 4 4 2 2
6 3A 1A 1 . 1A-3A 4 4 2 2