我正在尝试预测遗传变异所属的类别。我的数据框在我的代码中称为遗传。我将数据框按如下方式分为训练和测试数据集:
set.seed(1)
train=sample(54248,27124)
test=-train
Genetictrain=Genetic[train,]
Genetictest=Genetic[test,]
问题是我的一个解释变量(属于类别,数据框的列之一)在训练集(Genetictrain)和测试集(Genetictest)中具有不同的值。说明性变量称为Genetic $ Consequence。遗传结果的级别为:
[1] "3_prime_UTR_variant"
[2] "5_prime_UTR_variant"
[3] "downstream_gene_variant"
[4] "frameshift_variant"
[5] "frameshift_variant&splice_region_variant"
[6] "frameshift_variant&start_lost"
[7] "frameshift_variant&start_lost&start_retained_variant"
[8] "frameshift_variant&stop_lost"
[9] "frameshift_variant&stop_retained_variant"
[10] "inframe_deletion"
[11] "inframe_deletion&splice_region_variant"
[12] "inframe_insertion"
[13] "inframe_insertion&splice_region_variant"
[14] "intergenic_variant"
[15] "intron_variant"
[16] "intron_variant&non_coding_transcript_variant"
[17] "missense_variant"
[18] "missense_variant&splice_region_variant"
[19] "protein_altering_variant"
[20] "splice_acceptor_variant"
[21] "splice_acceptor_variant&coding_sequence_variant"
[22]
"splice_acceptor_variant&coding_sequence_variant&intron_variant"
[23] "splice_acceptor_variant&intron_variant"
[24] "splice_donor_variant"
[25] "splice_donor_variant&coding_sequence_variant"
[26] "splice_donor_variant&coding_sequence_variant&intron_variant"
[27] "splice_donor_variant&intron_variant"
[28] "splice_region_variant&3_prime_UTR_variant"
[29] "splice_region_variant&5_prime_UTR_variant"
[30] "splice_region_variant&coding_sequence_variant&intron_variant"
[31] "splice_region_variant&intron_variant"
[32] "splice_region_variant&synonymous_variant"
[33] "start_lost"
[34] "start_lost&5_prime_UTR_variant"
[35] "start_lost&splice_region_variant"
[36] "stop_gained"
[37] "stop_gained&frameshift_variant"
[38] "stop_gained&inframe_deletion"
[39] "stop_gained&inframe_insertion"
[40] "stop_gained&protein_altering_variant"
[41] "stop_gained&splice_region_variant"
[42] "stop_lost"
[43] "stop_lost&3_prime_UTR_variant"
[44] "stop_retained_variant"
[45] "stop_retained_variant&3_prime_UTR_variant"
[46] "synonymous_variant"
[47] "TF_binding_site_variant"
[48] "upstream_gene_variant"
但是:当我对训练数据(Genetictrain)进行逻辑回归时,出现错误:
Error in model.frame.default(Terms, newdata, na.action = na.action, xlev = object$xlevels) :
factor Consequence has new levels frameshift_variant&stop_retained_variant, protein_altering_variant, splice_acceptor_variant&coding_sequence_variant, start_lost&splice_region_variant, stop_retained_variant&3_prime_UTR_variant
我用于逻辑回归的代码是:
Logisticfit=glm(CLASS~AF_TGP + Consequence + CHROM + AF_ESP+STRAND + AF_EXAC + CADD_RAW + LoFtool + CADD_PHRED,data=Genetictrain,family="binomial")
LogisticProb=predict(Logisticfit,Genetictest,type="response")
错误结果(使用上面的预测函数运行代码)是因为训练集,Generictrain没有出现任何后果的蛋白质改变变体,但是Genetictest确实发生了后果的蛋白质改变变体:
which(Genetictrain$Consequence=="protein_altering_variant")
integer(0)
which(Genetictest$Consequence=="protein_altering_variant")
[1] 10720
与错误引起的其他值相同。
是否有任何方法可以避免这种情况,以便我可以运行预测函数而不会收到错误消息(请注意,我的解释变量既是类别变量又是连续变量,并且我正在尝试预测二进制0或1的CLASS)?结果对我来说是一个重要的解释变量,因此我不想删除它。
谢谢!
答案 0 :(得分:1)
现在检查您的数据框。数据集出现问题不匹配
火车数据集和测试数据集在Genetic$consequence
中没有相同的信息。
检查以下代码:
data.frame(table(Genetic$Consequence))%>%setNames(.,c("Consequnce","Freq"))%>%arrange(Freq)
输出:
Consequnce Freq
1 frameshift_variant&start_lost&start_retained_variant 1
2 frameshift_variant&stop_retained_variant 1
3 inframe_insertion&splice_region_variant 1
4 intron_variant&non_coding_transcript_variant 1
5 splice_region_variant&coding_sequence_variant&intron_variant 1
6 start_lost&5_prime_UTR_variant 1
7 stop_gained&inframe_deletion 1
8 stop_gained&inframe_insertion 1
9 stop_gained&protein_altering_variant 1
频率有9种结果,因为1表示如果u分割将进入训练或测试数据集中的数据帧。
示例 比如说“ frameshift_variant&start_lost&start_retained_variant”仅在Genericdata $结果中有一行,所以当您划分数据帧时,它将进入训练或测试数据集中。如果火车数据集中的那一行,则测试数据集中没有任何行。为此,它只会返回错误。
解决方案: 尝试使用1获得更多的频率变量(意味着仅存在一行,因此在一列火车中至少需要2行,在测试数据集中至少需要2行) 要么 U可以像低频率那样对数据集进行子集化,以便在训练和测试数据集中轻松获得信息。