在n_jobs = -1
中使用sklearn.model_selection.cross_val_score
作为参数时出现错误。我是深度学习和ANN的初学者,并且根据this课程的k折交叉验证中的讲师,使用n_jobs = -1
使用所有CPU处理器以减少时间,但是就我而言,这是一个错误。
错误-
BrokenProcessPool:任务无法反序列化。请确保该函数的参数都是可拾取的。
可以找到here的完整堆栈跟踪。
import keras
from keras.wrappers.scikit_learn import KerasClassifier
from sklearn.model_selection import cross_val_score
def build_classifier():
classifier = Sequential()
classifier.add(Dense(units = 6, kernel_initializer = 'uniform', activation = 'relu', input_dim = 11))
classifier.add(Dense(units = 6, kernel_initializer = 'uniform', activation = 'relu'))
classifier.add(Dense(units = 1, kernel_initializer = 'uniform', activation = 'sigmoid'))
classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])
return classifier
classifier = KerasClassifier(build_fn = build_classifier, batch_size = 10, nb_epoch = 100)
accuracies = cross_val_score(estimator = classifier, X = X_train, y = Y_train, cv = 10, n_jobs = -1)
答案 0 :(得分:0)
n_jobs = -1不起作用,因为您的GPU关闭或我说GPU没有激活,您可以使用cuda命令激活它或使用这些链接激活tensorflow-gpu
Install Tensorflow (GPU version) for Windows and Anaconda
How to install Tensorflow-GPU on Windows 10
或者,您可以参考此内容,以了解n_jobs
答案 1 :(得分:0)
尝试在外部文件中创建build_classifier
函数并将其导入。例如:
在文件classifier_builder.py
中:
import keras
def build_classifier():
classifier = Sequential()
classifier.add(Dense(units = 6, kernel_initializer = 'uniform', activation = 'relu', input_dim = 11))
classifier.add(Dense(units = 6, kernel_initializer = 'uniform', activation = 'relu'))
classifier.add(Dense(units = 1, kernel_initializer = 'uniform', activation = 'sigmoid'))
classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])
return classifier
然后在笔记本中:
import classifier_builder
classifier = KerasClassifier(build_fn = build_classifier, batch_size = 10, nb_epoch = 100)
accuracies = cross_val_score(estimator = classifier, X = X_train, y = Y_train, cv = 10, n_jobs = -1)
这为我解决了这个问题。显然,内联函数是不可腌制的。
答案 2 :(得分:-1)
我使用 n_jobs=1 跳过了错误