我有一个要在未来30年内预测的变量。不幸的是我没有很多样品。
df = pd.DataFrame({'FISCAL_YEAR': [1979,1980,1981,1982,1983, 1984,
1985, 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
1995, 1996,
1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006,
2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014, 2015, 2016,
2017, 2018, 2019],
'VALS': [1341.9, 1966.95, 2085.75, 2087.1000000000004, 2760.75,
3461.4, 3156.3, 3061.8, 2309.8500000000004, 2320.65, 2535.3,
2964.6000000000004, 2949.75, 2339.55,
2327.4, 2571.75, 2299.05, 1560.6000000000001, 1370.25, 1301.4,
1215.0, 5691.6, 6281.55, 6529.950000000001, 17666.100000000002,
14467.95, 15205.050000000001, 14717.7, 14426.1, 12946.5,
13000.5, 12761.550000000001, 13076.1, 13444.650000000001,
13444.650000000001, 13321.800000000001, 13536.45, 13331.25,
12630.6, 12741.300000000001, 12658.95]})
这是我的代码:
def build_model(n_neurons,dropout,s):
lstm = Sequential()
if cudnn:
lstm.add(CuDNNLSTM(n_neurons))
n_epochs = 200
else:
lstm.add(Masking(mask_value=-1,input_shape=(s[1],s[2])))
lstm.add(LSTM(n_neurons,dropout=dropout))
n_epochs = 500
lstm.add(Dense(1))
#lstm.add(Activation('softmax'))
lstm.compile(loss='mean_squared_error',optimizer='adam')
return lstm
def create_df(dfin,fwd,lstmws):
''' Input Normalization '''
idx = dfin.FISCAL_YEAR.values[fwd:]
dfx = dfin[[varn]].copy()
dfy = dfin[[varn]].copy()
# LSTM window - use last lstmws values
for i in range(0,lstmws-1):
dfx = dfx.join(dfin[[varn]].shift(-i-1),how='left',rsuffix='{:02d}'.format(i+1))
dfx = (dfx-vmnx).divide(vmxx-vmnx)
dfx.fillna(-1,inplace=True) # replace missing values with -1
dfy = (dfy-vmnx).divide(vmxx-vmnx)
dfy.fillna(-1,inplace=True) # replace missing values with -1
return dfx,dfy,idx
def forecast(dfin,dfx,lstm,idx,gapyr=1):
''' Model Forecast '''
xhat = dfx.values
xhat = xhat.reshape(xhat.shape[0],lstmws,int(xhat.shape[1]/lstmws))
yhat = lstm.predict(xhat)
yhat = yhat*(vmxx-vmnx)+vmnx
dfout = pd.DataFrame(list(zip(idx+gapyr,yhat.reshape(1,-1)[0])),columns=['FISCAL_YEAR',varn])
dfout = pd.concat([dfin.head(1),dfout],axis=0).reset_index(drop=True)
#append last prediction to X and use for prediction
dfin = pd.concat([dfin,dfout.tail(1)],axis=0).reset_index(drop=True)
return dfin
def lstm_training(dfin,lstmws,fwd,num_years,batchsize=4,cudnn=False,n_neurons=47,dropout=0.05,retrain=False):
''' LSTM Parameter '''
seed(2018)
set_random_seed(2018)
gapyr = 1 # Forecast +1 Year
dfx,dfy,idx = create_df(dfin,fwd,lstmws)
X,y = dfx.iloc[fwd:-gapyr].values,dfy[fwd+gapyr:].values[:,0]
X,y = X.reshape(X.shape[0],lstmws,int(X.shape[1]/lstmws)),y.reshape(len(y), 1)
lstm = build_model(n_neurons,dropout,X.shape)
''' LSTM Training Start '''
if batchsize == 1:
history_i =
lstm.fit(X,y,epochs=25,batch_size=batchsize,verbose=0,shuffle=False)
else:
history_i = lstm.fit(X,y,epochs=n_epochs,batch_size=batchsize,verbose=0,shuffle=False)
dfin = forecast(dfin,dfx,lstm,idx)
lstm.reset_states()
if not retrain:
for fwd in range(1,num_years):
dfx,dfy,idx = create_df(dfin,fwd,lstmws)
dfin = forecast(dfin,dfx,lstm,idx)
lstm.reset_states()
del dfy,X,y,lstm
gc.collect();
clear_session();
return dfin,history_i
varn = "VALS"
#LSTM-window
lstmws = 10
vmnx,vmxx = df[varn].astype(float).min(),df[varn].astype(float).max()
dfin,history_i = lstm_training(dfin,lstmws,0,2051-2018)
在我的第一个版本中,每次添加新的预测后,我都会对模型进行重新训练,并且预测从未收敛。但是因为每次进行新的观察后都要进行培训,所以我不得不改变。
我的结果:
dfin.VALS.values
array([ 1341.9 , 1966.95 , 2085.75 , 2087.1 ,
2760.75 , 3461.4 , 3156.3 , 3061.8 ,
2309.85 , 2320.65 , 2535.3 , 2964.6 ,
2949.75 , 2339.55 , 2327.4 , 2571.75 ,
2299.05 , 1560.6 , 1370.25 , 1301.4 ,
1215. , 5691.6 , 6281.55 , 6529.95 ,
17666.1 , 14467.95 , 15205.05 , 14717.7 ,
14426.1 , 12946.5 , 13000.5 , 12761.55 ,
13076.1 , 13444.65 , 13444.65 , 13321.8 ,
13536.45 , 13331.25 , 12630.6 , 12741.3 ,
12658.95 , 10345.97167969, 12192.12792969, 13074.4296875 ,
13264.40917969, 12956.1796875 , 12354.1953125 , 11659.03125 ,
11044.06933594, 10643.19921875, 10552.52246094, 10552.52246094,
10552.52246094, 10552.52246094, 10552.52246094, 10552.52246094,
10552.52246094, 10552.52246094, 10552.52246094, 10552.52246094,
10552.52246094, 10552.52246094, 10552.52246094, 10552.52246094,
10552.52246094, 10552.52246094, 10552.52246094, 10552.52246094,
10552.52246094, 10552.52246094, 10552.52246094, 10552.52246094,
10552.52246094, 10552.52246094])
如何避免在过去20多年中获得相同的预测?
编辑:
我在前面添加了更多的随机数据,以查看是否是由于样本量少所致,但是一段时间后预测仍保持不变。
df0 = pd.DataFrame([range(1900,1979),list(np.random.rand(1979-1900)*(vmxx-vmnx)+vmnx)],index=["FISCAL_YEAR","VALS"]).T
df = pd.concat([df0,df])
df["FISCAL_YEAR"] = df["FISCAL_YEAR"].astype(int)
df.index = range(1900,2020)
我观察到的一件奇怪的事是,预测在10年后是相同的,即窗口大小,但是如果我将lstmws增加到20,则预测在20年后会收敛:
lstmws = 20
结果:
{'FISCAL_YEAR': [2020, 2021, 2022, 2023, 2024, 2025, 2026, 027, 028, 2029, 2030, 2031, 2032, 2033, 2034, 2035, 2036, 2037, 2038, 039, 2040, 2041, 2042, 2043, 2044, 2045, 2046, 2047, 2048, 2049, 050, 2051, 2052],
'VALS': [11183.32421875, 12388.28125, 13151.013671875, 12543.6796875, 2590.0888671875, 12002.583984375, 11822.8857421875, 11479.6572265625, 1423.1279296875, 11444.5751953125, 11506.60546875, 11563.3173828125, 1595.0029296875, 11599.8955078125, 11586.8037109375, 11571.337890625, 1574.541015625, 11620.7900390625, 11734.2431640625, 11934.216796875, 1934.216796875, 11934.216796875, 11934.216796875, 11934.216796875, 1934.216796875, 11934.216796875, 11934.216796875, 11934.216796875, 1934.216796875, 11934.216796875, 11934.216796875, 11934.216796875, 1934.216796875]}
答案 0 :(得分:1)
我可以看到您的预测步骤仅使用默认批次大小?尝试将批次大小设置为您用于培训步骤的大小。看看是否有帮助。
yhat = lstm.predict(xhat, batch_size=batchsize)
答案 1 :(得分:1)
根据我对LSTM的经验(我一直在生成诸如this之类的舞蹈序列),我发现有两点特别有助于防止模型停滞和预测相同的输出。
首先,使用混合密度网络而不是L2损耗(如您所愿)会很有帮助。详细信息请阅读Christopher Bishop的paper on MDN layers,但是基本上L2损失试图将某些输入的误差项的条件平均值预测为y。如果对于一个值x,您有多个可能的输出y0,y1,y2,每个输出都有一定的概率(就像许多复杂系统一样),则需要考虑MDN层和对数似然损失。 Here是我正在使用的Keras实现。
现在更仔细地阅读您的情况,这可能对您的情况没有帮助,因为您似乎正在预测一个时间序列,根据定义,每个x映射到一个y。
接下来,我发现在我要预测的LSTM n
序列值之前输入序列值很有帮助。 n越大,我发现的结果越好(尽管训练速度较慢)。我读过的许多论文都使用1024个先前的序列值来预测下一个序列值。
您没有很多观测值,但是您可以尝试将之前的8个观测值输入以预测下一个观测值。