假设您有一个熊猫DataFrame
,它的主体中有某种数据,而column
和index
名称中的数字。
>>> data=np.array([['a', 'b', 'c'], ['d', 'e', 'f'], ['g', 'h', 'i']])
>>> columns = [2, 4, 8]
>>> index = [10, 4, 2]
>>> df = pd.DataFrame(data, columns=columns, index=index)
>>> df
2 4 8
10 a b c
4 d e f
2 g h i
现在假设我们想基于索引和列的比较以某种方式操纵数据帧。请考虑以下内容。
如果索引大于列,则用'k'替换字母:
2 4 8
10 k k k
4 k e f
2 g h i
索引等于列的字母替换为'U':
2 4 8
10 k k k
4 k U f
2 U h i
其中列大于索引的地方用'Y'替换字母:
2 4 8
10 k k k
4 k U Y
2 U Y Y
使问题对所有人有用:
进行此替换的快速方法是什么?
进行此替换的最简单方法是什么?
从最小示例加速结果
jezrael :556 µs ± 66.1 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
user3471881 :329 µs ± 11.4 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
雷木 :4.65 ms ± 252 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
这是重复的吗?
我在Google上搜索了pandas replace compare index column
,结果是:
Pandas - Compare two dataframes and replace values matching condition
Python pandas: replace values based on location not index value
Pandas DataFrame: replace all values in a column, based on condition
但是,对于a)可行还是b)如何以这种方式进行比较,我没有任何感触
答案 0 :(得分:7)
我认为您需要numpy.select
进行广播:
m1 = df.index.values[:, None] > df.columns.values
m2 = df.index.values[:, None] == df.columns.values
df = pd.DataFrame(np.select([m1, m2], ['k','U'], 'Y'), columns=df.columns, index=df.index)
print (df)
2 4 8
10 k k k
4 k U Y
2 U Y Y
性能:
np.random.seed(1000)
N = 1000
a = np.random.randint(100, size=N)
b = np.random.randint(100, size=N)
df = pd.DataFrame(np.random.choice(list('abcdefgh'), size=(N, N)), columns=a, index=b)
#print (df)
def us(df):
values = np.array(np.array([df.index]).transpose() - np.array([df.columns]), dtype='object')
greater = values > 0
less = values < 0
same = values == 0
values[greater] = 'k'
values[less] = 'Y'
values[same] = 'U'
return pd.DataFrame(values, columns=df.columns, index=df.index)
def jez(df):
m1 = df.index.values[:, None] > df.columns.values
m2 = df.index.values[:, None] == df.columns.values
return pd.DataFrame(np.select([m1, m2], ['k','U'], 'Y'), columns=df.columns, index=df.index)
In [236]: %timeit us(df)
107 ms ± 358 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
In [237]: %timeit jez(df)
64 ms ± 299 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
答案 1 :(得分:2)
不确定实现此目标的最快方法,但是一个非常简单的方法就是像这样迭代数据框:
for i in df.index:
for j in df.columns:
if i>j:
df.loc[i,j]='k'
elif j>i:
df.loc[i,j]='y'
else:
df.loc[i,j]='u'
答案 2 :(得分:1)
1。使用np.arrays
+ np.select
:
values = np.array(np.array([df.index]).transpose() - np.array([df.columns]))
greater = values > 0
same = values == 0
df = pd.DataFrame(np.select([greater, same], ['k', 'U'], 'Y'), columns=df.columns, index=df.index)
2。使用np.arrays
和手动遮罩。
values = np.array(np.array([df.index]).transpose() - np.array([df.columns]), dtype='object')
greater = values > 0
less = values < 0
same = values == 0
values[greater] = 'k'
values[less] = 'Y'
values[same] = 'U'
df = pd.DataFrame(values, columns=df.columns, index=df.index)