我正在对贷款预测数据集(Pandas数据框)进行探索性数据分析。该数据框有两列:Property_Area,其值分为三种类型:农村,城市,Semiurban。另一列是Loan_Status明智的值有两种类型:Y,N。我想绘制如下图:在X轴上应该有Property_Area,对于每种类型的3个区域,我想显示接受的贷款百分比或沿Y轴拒绝。该怎么做?
这是我的数据示例:
data = pd.DataFrame({'Loan_Status':['N','Y','Y','Y','Y','N','N','Y','N','Y','N'],
'Property_Area': ['Rural', 'Urban','Urban','Urban','Urban','Urban',
'Semiurban','Urban','Semiurban','Rural','Semiurban']})
我尝试过:
status = data['Loan_Status']
index = data['Property_Area']
df = pd.DataFrame({'Loan Status' : status}, index=index)
ax = df.plot.bar(rot=0)
data is the dataframe for the original dataset
编辑: 我能够做自己想做的事,但是为此,我必须编写一个长代码:
new_data = data[['Property_Area', 'Loan_Status']].copy()
count_rural_y = new_data[(new_data.Property_Area == 'Rural') & (data.Loan_Status == 'Y') ].count()
count_rural = new_data[(new_data.Property_Area == 'Rural')].count()
#print(count_rural[0])
#print(count_rural_y[0])
rural_y_percent = (count_rural_y[0]/count_rural[0])*100
#print(rural_y_percent)
#print("-"*50)
count_urban_y = new_data[(new_data.Property_Area == 'Urban') & (data.Loan_Status == 'Y') ].count()
count_urban = new_data[(new_data.Property_Area == 'Urban')].count()
#print(count_urban[0])
#print(count_urban_y[0])
urban_y_percent = (count_urban_y[0]/count_urban[0])*100
#print(urban_y_percent)
#print("-"*50)
count_semiurban_y = new_data[(new_data.Property_Area == 'Semiurban') & (data.Loan_Status == 'Y') ].count()
count_semiurban = new_data[(new_data.Property_Area == 'Semiurban')].count()
#print(count_semiurban[0])
#print(count_semiurban_y[0])
semiurban_y_percent = (count_semiurban_y[0]/count_semiurban[0])*100
#print(semiurban_y_percent)
#print("-"*50)
objects = ('Rural', 'Urban', 'Semiurban')
y_pos = np.arange(len(objects))
performance = [rural_y_percent,urban_y_percent,semiurban_y_percent]
plt.bar(y_pos, performance, align='center', alpha=0.5)
plt.xticks(y_pos, objects)
plt.ylabel('Loan Approval Percentage')
plt.title('Area Wise Loan Approval Percentage')
plt.show()
输出:
如果可以的话,能否请我建议一个更简单的方法?
答案 0 :(得分:0)
Crosstabs
的熊猫normalize
将使这一过程变得简单在pandas数据框中获取2列以上并为每行的百分比的一种简单方法是将pandas
crosstab
函数与normalize = 'index'
一起使用< / p>
交叉表函数的查找方式如下:
# Crosstab with "normalize = 'index'".
df_percent = pd.crosstab(data.Property_Area,data.Loan_Status,
normalize = 'index').rename_axis(None)
# Multiply all percentages by 100 for graphing.
df_percent *= 100
这将输出df_percent
,看起来像这样:
Loan_Status N Y
Rural 50.000000 50.000000
Semiurban 66.666667 33.333333
Urban 16.666667 83.333333
然后,您可以非常轻松地将其绘制到条形图中:
# Plot only approvals as bar graph.
plt.bar(df_percent.index, df_percent.Y, align='center', alpha=0.5)
plt.ylabel('Loan Approval Percentage')
plt.title('Area Wise Loan Approval Percentage')
plt.show()
并获得结果图表:
Here you can see the code working in google colab
这是我为此答案生成的示例数据框:
data = pd.DataFrame({'Loan_Status':['N','Y','Y','Y','Y','N','N','Y','N','Y','Y'
], 'Property_Area': ['Rural', 'Urban','Urban','Urban','Urban','Urban',
'Semiurban','Urban','Semiurban','Rural','Semiurban']})
创建此示例数据框:
Loan_Status Property_Area
0 N Rural
1 Y Urban
2 Y Urban
3 Y Urban
4 Y Urban
5 N Urban
6 N Semiurban
7 Y Urban
8 N Semiurban
9 Y Rural
10 Y Semiurban