有没有办法限制提交给工人池的数量?

时间:2018-10-30 20:58:27

标签: python python-3.x python-multiprocessing

我有一批工人,并使用apply_async向他们提交工作。 我不在乎应用于每个项目的功能的结果。 池似乎接受任何数量的apply_async调用,无论数据量多大或工作人员可以跟上多快。

是否有一种方法可以使apply_async在等待一定数量的项目处理时立即被阻止?我确定在内部,该池正在使用队列,因此仅对队列使用最大大小会很简单?

如果不支持此功能,则提交大型报告是否有意义,因为这看起来非常基础,添加起来却很琐碎?

如果为了完成这项工作而必须实质上重新实现Pool的整个逻辑,那将是一个耻辱。

这是一些非常基本的代码:

from multiprocessing import Pool
dowork(item):
    # process the item (for side effects, no return value needed)
    pass 

pool = Pool(nprocesses)
for work in getmorework():
    # this should block if we already have too many work waiting!        
    pool.apply_async(dowork, (work,))
pool.close()
pool.join()

2 个答案:

答案 0 :(得分:1)

是这样吗?

import multiprocessing
import time

worker_count = 4
mp = multiprocessing.Pool(processes=worker_count)
workers = [None] * worker_count

while True:
    try:
        for i in range(worker_count):
            if workers[i] is None or workers[i].ready():
                workers[i] = mp.apply_async(dowork, args=next(getmorework()))
    except StopIteration:
        break
    time.sleep(1)

我不知道您期望每个工作人员完成多快,time.sleep可能是必需的,也可能不是,或者可能需要不同的时间。

答案 1 :(得分:1)

另一种选择是直接使用Queue

from multiprocessing import Process, JoinableQueue
from time import sleep
from random import random

def do_work(i):
    print(f"worker {i}")
    sleep(random())
    print(f"done {i}")

def worker():
    while True:
        item = q.get()
        if item is None:
            break
        do_work(item)
        q.task_done()

def generator(n):
    for i in range(n):
        print(f"gen {i}")
        yield i

# 1 = allow generator to get this far ahead
q = JoinableQueue(1)

# 2 = maximum amount of parallelism
procs = [Process(target=worker) for _ in range(2)]
# and get them running
for p in procs:
    p.daemon = True
    p.start()

# schedule 10 items for processing
for item in generator(10):
    q.put(item)

# wait for jobs to finish executing
q.join()

# signal workers to finish up
for p in procs:
    q.put(None)
# wait for workers to actually finish
for p in procs:
    p.join()

大部分是从示例Python的queue模块中偷来的:

https://docs.python.org/3/library/queue.html#queue.Queue.join