with open('2model.json','r') as f:
json = f.read()
model = model_from_json(json)
model.load_weights("color_tensorflow_real_mode.h5")
我在Google colab上训练了一个keras模型。现在无法将其本地加载到我的系统上。收到此错误:ValueError:未知的初始值设定项:GlorotUniform
如何解决这个问题? 每次我在colab上制作模型并尝试在本地加载时,我都无法这样做。 收到此错误消息:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-17-c3ed162a8277> in <module>()
----> 1 model = model_from_json(json)
2 model.load_weights("color_tensorflow_real_mode.h5")
~\Anaconda3\lib\site-packages\tensorflow\python\keras\engine\saving.py in model_from_json(json_string, custom_objects)
349 config = json.loads(json_string)
350 from tensorflow.python.keras.layers import deserialize # pylint: disable=g-import-not-at-top
--> 351 return deserialize(config, custom_objects=custom_objects)
352
353
~\Anaconda3\lib\site-packages\tensorflow\python\keras\layers\serialization.py in deserialize(config, custom_objects)
62 module_objects=globs,
63 custom_objects=custom_objects,
---> 64 printable_module_name='layer')
~\Anaconda3\lib\site-packages\tensorflow\python\keras\utils\generic_utils.py in deserialize_keras_object(identifier, module_objects, custom_objects, printable_module_name)
171 custom_objects=dict(
172 list(_GLOBAL_CUSTOM_OBJECTS.items()) +
--> 173 list(custom_objects.items())))
174 with CustomObjectScope(custom_objects):
175 return cls.from_config(config['config'])
~\Anaconda3\lib\site-packages\tensorflow\python\keras\engine\network.py in from_config(cls, config, custom_objects)
1290 # First, we create all layers and enqueue nodes to be processed
1291 for layer_data in config['layers']:
-> 1292 process_layer(layer_data)
1293 # Then we process nodes in order of layer depth.
1294 # Nodes that cannot yet be processed (if the inbound node
~\Anaconda3\lib\site-packages\tensorflow\python\keras\engine\network.py in process_layer(layer_data)
1276 from tensorflow.python.keras.layers import deserialize as deserialize_layer # pylint: disable=g-import-not-at-top
1277
-> 1278 layer = deserialize_layer(layer_data, custom_objects=custom_objects)
1279 created_layers[layer_name] = layer
1280
~\Anaconda3\lib\site-packages\tensorflow\python\keras\layers\serialization.py in deserialize(config, custom_objects)
62 module_objects=globs,
63 custom_objects=custom_objects,
---> 64 printable_module_name='layer')
~\Anaconda3\lib\site-packages\tensorflow\python\keras\utils\generic_utils.py in deserialize_keras_object(identifier, module_objects, custom_objects, printable_module_name)
173 list(custom_objects.items())))
174 with CustomObjectScope(custom_objects):
--> 175 return cls.from_config(config['config'])
176 else:
177 # Then `cls` may be a function returning a class.
~\Anaconda3\lib\site-packages\tensorflow\python\keras\engine\base_layer.py in from_config(cls, config)
1615 A layer instance.
1616 """
-> 1617 return cls(**config)
1618
1619
~\Anaconda3\lib\site-packages\tensorflow\python\keras\layers\convolutional.py in __init__(self, filters, kernel_size, strides, padding, data_format, dilation_rate, activation, use_bias, kernel_initializer, bias_initializer, kernel_regularizer, bias_regularizer, activity_regularizer, kernel_constraint, bias_constraint, **kwargs)
464 activation=activations.get(activation),
465 use_bias=use_bias,
--> 466 kernel_initializer=initializers.get(kernel_initializer),
467 bias_initializer=initializers.get(bias_initializer),
468 kernel_regularizer=regularizers.get(kernel_regularizer),
~\Anaconda3\lib\site-packages\tensorflow\python\keras\initializers.py in get(identifier)
153 return None
154 if isinstance(identifier, dict):
--> 155 return deserialize(identifier)
156 elif isinstance(identifier, six.string_types):
157 config = {'class_name': str(identifier), 'config': {}}
~\Anaconda3\lib\site-packages\tensorflow\python\keras\initializers.py in deserialize(config, custom_objects)
145 module_objects=globals(),
146 custom_objects=custom_objects,
--> 147 printable_module_name='initializer')
148
149
~\Anaconda3\lib\site-packages\tensorflow\python\keras\utils\generic_utils.py in deserialize_keras_object(identifier, module_objects, custom_objects, printable_module_name)
161 cls = module_objects.get(class_name)
162 if cls is None:
--> 163 raise ValueError('Unknown ' + printable_module_name + ': ' + class_name)
164 if hasattr(cls, 'from_config'):
165 arg_spec = tf_inspect.getfullargspec(cls.from_config)
ValueError: Unknown initializer: GlorotUniform
Stackoverflow要求我添加详细信息,而我无须添加。或者我不确定要添加什么。请帮忙。
答案 0 :(得分:3)
通过运行Keras
或{,确保您拥有tensorflow
和2.4.4
(分别为1.11.0
和pip install keras tensorflow
)的最新版本{1}}。
如果是使用不推荐使用的对象的Google Colab,则可能需要使用自定义对象:
conda install keras tensorflow
不确定这是否是您的情况。
答案 1 :(得分:2)
使用
加载模型 from tensorflow.keras.models import load_model
代替
from keras.models import load_model
我尝试了许多方法,但这是最后可行的方法!
答案 2 :(得分:0)
当我尝试本地加载在Colab上训练的模型时,我遇到了类似的错误(未知图层:名称)。我试图更改keras版本,tensorflow版本,conda版本等,但没有任何帮助。我通过将模型的权重保存在Colab上,在本地创建相同的模型并将权重加载到该模型中来解决了这个问题。