我在SSE2和AVX中实现了4x4矩阵逆。两者都比普通实现要快。但是,如果启用了AVX(-mavx),则SSE2实现的运行速度将比手动AVX实现快。看来编译器使我的SSE2实现与AVX更加友好:(
在我的AVX实现中,乘法运算较少,加法运算较少...因此,我希望AVX可能比SSE更快。也许像_mm256_permute2f128_ps
,_mm256_permutevar_ps/_mm256_permute_ps
这样的指令会使AVX变慢?我不打算将SSE / XMM寄存器加载到AVX / YMM寄存器。
如何使AVX实施比SSE更快?
我的CPU:2.30GHz(Ivy Bridge)的Intel(R)Core(TM)i7-3615QM CPU
Plain with -O3 : 0.045853 secs
SSE2 with -O3 : 0.026021 secs
SSE2 with -O3 -mavx: 0.024336 secs
AVX1 with -O3 -mavx: 0.031798 secs
Updated (See bottom of question) all have -O3 -mavx flags:
AVX1 (reduced div) : 0.027666 secs
AVX1 (using rcp_ps) : 0.023205 secs
SSE2 (using rcp_ps) : 0.021969 secs
初始矩阵:
Matrix (float4x4):
|0.0714 -0.6589 0.7488 2.0000|
|0.9446 0.2857 0.1613 4.0000|
|-0.3202 0.6958 0.6429 6.0000|
|0.0000 0.0000 0.0000 1.0000|
测试代码:
start = clock();
for (int i = 0; i < 1000000; i++) {
glm_mat4_inv_sse2(m, m);
// glm_mat4_inv_avx(m, m);
// glm_mat4_inv(m, m)
}
end = clock();
total = (float)(end - start) / CLOCKS_PER_SEC;
printf("%f secs\n\n", total);
实施:
SSE Impl:https://gist.github.com/recp/690025c955c2e69a91e3a60a13768dee
AVX Impl:https://gist.github.com/recp/8ccc5ad0d19f5516de55f9bf7b5045b2
SSE2实现输出(使用Godbolt;选项-O3):
glm_mat4_inv_sse2:
movaps xmm8, XMMWORD PTR [rdi+32]
movaps xmm2, XMMWORD PTR [rdi+16]
movaps xmm5, XMMWORD PTR [rdi+48]
movaps xmm6, XMMWORD PTR [rdi]
movaps xmm4, xmm8
movaps xmm13, xmm8
movaps xmm11, xmm8
shufps xmm11, xmm2, 170
shufps xmm4, xmm5, 238
movaps xmm3, xmm11
movaps xmm1, xmm8
pshufd xmm12, xmm4, 127
shufps xmm13, xmm2, 255
movaps xmm0, xmm13
movaps xmm9, xmm8
pshufd xmm4, xmm4, 42
shufps xmm9, xmm2, 85
shufps xmm1, xmm5, 153
movaps xmm7, xmm9
mulps xmm0, xmm4
pshufd xmm10, xmm1, 42
movaps xmm1, xmm11
shufps xmm5, xmm8, 0
mulps xmm3, xmm12
pshufd xmm5, xmm5, 128
mulps xmm7, xmm12
mulps xmm1, xmm10
subps xmm3, xmm0
movaps xmm0, xmm13
mulps xmm0, xmm10
mulps xmm13, xmm5
subps xmm7, xmm0
movaps xmm0, xmm9
mulps xmm0, xmm4
subps xmm0, xmm1
movaps xmm1, xmm8
movaps xmm8, xmm11
shufps xmm1, xmm2, 0
mulps xmm8, xmm5
movaps xmm11, xmm7
mulps xmm4, xmm1
mulps xmm5, xmm9
movaps xmm9, xmm2
mulps xmm12, xmm1
shufps xmm9, xmm6, 85
pshufd xmm9, xmm9, 168
mulps xmm1, xmm10
movaps xmm10, xmm2
shufps xmm10, xmm6, 0
pshufd xmm10, xmm10, 168
subps xmm4, xmm8
mulps xmm7, xmm10
movaps xmm8, xmm2
shufps xmm2, xmm6, 255
shufps xmm8, xmm6, 170
pshufd xmm8, xmm8, 168
pshufd xmm2, xmm2, 168
mulps xmm11, xmm8
subps xmm12, xmm13
movaps xmm13, XMMWORD PTR .LC0[rip]
subps xmm1, xmm5
movaps xmm5, xmm3
mulps xmm5, xmm9
mulps xmm3, xmm10
subps xmm5, xmm11
movaps xmm11, xmm0
mulps xmm11, xmm2
mulps xmm0, xmm10
addps xmm5, xmm11
movaps xmm11, xmm12
mulps xmm11, xmm8
mulps xmm12, xmm9
xorps xmm5, xmm13
subps xmm3, xmm11
movaps xmm11, xmm4
mulps xmm4, xmm9
subps xmm7, xmm12
mulps xmm11, xmm2
mulps xmm2, xmm1
mulps xmm1, xmm8
subps xmm0, xmm4
addps xmm3, xmm11
movaps xmm11, XMMWORD PTR .LC1[rip]
addps xmm2, xmm7
addps xmm0, xmm1
movaps xmm1, xmm5
xorps xmm3, xmm11
xorps xmm2, xmm13
shufps xmm1, xmm3, 0
xorps xmm0, xmm11
movaps xmm4, xmm2
shufps xmm4, xmm0, 0
shufps xmm1, xmm4, 136
mulps xmm1, xmm6
pshufd xmm4, xmm1, 27
addps xmm1, xmm4
pshufd xmm4, xmm1, 65
addps xmm1, xmm4
movaps xmm4, XMMWORD PTR .LC2[rip]
divps xmm4, xmm1
mulps xmm5, xmm4
mulps xmm3, xmm4
mulps xmm2, xmm4
mulps xmm0, xmm4
movaps XMMWORD PTR [rsi], xmm5
movaps XMMWORD PTR [rsi+16], xmm3
movaps XMMWORD PTR [rsi+32], xmm2
movaps XMMWORD PTR [rsi+48], xmm0
ret
.LC0:
.long 0
.long 2147483648
.long 0
.long 2147483648
.LC1:
.long 2147483648
.long 0
.long 2147483648
.long 0
.LC2:
.long 1065353216
.long 1065353216
.long 1065353216
.long 1065353216
SSE2实现(启用了AVX)输出(使用Godbolt;选项-O3 -mavx):
glm_mat4_inv_sse2:
vmovaps xmm9, XMMWORD PTR [rdi+32]
vmovaps xmm6, XMMWORD PTR [rdi+48]
vmovaps xmm2, XMMWORD PTR [rdi+16]
vmovaps xmm7, XMMWORD PTR [rdi]
vshufps xmm5, xmm9, xmm6, 238
vpshufd xmm13, xmm5, 127
vpshufd xmm5, xmm5, 42
vshufps xmm1, xmm9, xmm6, 153
vshufps xmm11, xmm9, xmm2, 170
vshufps xmm12, xmm9, xmm2, 255
vmulps xmm3, xmm11, xmm13
vpshufd xmm1, xmm1, 42
vmulps xmm0, xmm12, xmm5
vshufps xmm10, xmm9, xmm2, 85
vshufps xmm6, xmm6, xmm9, 0
vpshufd xmm6, xmm6, 128
vmulps xmm8, xmm10, xmm13
vmulps xmm4, xmm10, xmm5
vsubps xmm3, xmm3, xmm0
vmulps xmm0, xmm12, xmm1
vsubps xmm8, xmm8, xmm0
vmulps xmm0, xmm11, xmm1
vsubps xmm4, xmm4, xmm0
vshufps xmm0, xmm9, xmm2, 0
vmulps xmm9, xmm12, xmm6
vmulps xmm13, xmm0, xmm13
vmulps xmm5, xmm0, xmm5
vmulps xmm0, xmm0, xmm1
vsubps xmm12, xmm13, xmm9
vmulps xmm9, xmm11, xmm6
vmovaps xmm13, XMMWORD PTR .LC0[rip]
vmulps xmm6, xmm10, xmm6
vshufps xmm10, xmm2, xmm7, 85
vpshufd xmm10, xmm10, 168
vsubps xmm5, xmm5, xmm9
vshufps xmm9, xmm2, xmm7, 170
vpshufd xmm9, xmm9, 168
vsubps xmm1, xmm0, xmm6
vmulps xmm11, xmm8, xmm9
vshufps xmm0, xmm2, xmm7, 0
vshufps xmm2, xmm2, xmm7, 255
vmulps xmm6, xmm3, xmm10
vpshufd xmm2, xmm2, 168
vpshufd xmm0, xmm0, 168
vmulps xmm3, xmm3, xmm0
vmulps xmm8, xmm8, xmm0
vmulps xmm0, xmm4, xmm0
vsubps xmm6, xmm6, xmm11
vmulps xmm11, xmm4, xmm2
vaddps xmm6, xmm6, xmm11
vmulps xmm11, xmm12, xmm9
vmulps xmm12, xmm12, xmm10
vxorps xmm6, xmm6, xmm13
vsubps xmm3, xmm3, xmm11
vmulps xmm11, xmm5, xmm2
vmulps xmm5, xmm5, xmm10
vsubps xmm8, xmm8, xmm12
vmulps xmm2, xmm1, xmm2
vmulps xmm1, xmm1, xmm9
vaddps xmm3, xmm3, xmm11
vmovaps xmm11, XMMWORD PTR .LC1[rip]
vsubps xmm0, xmm0, xmm5
vaddps xmm2, xmm8, xmm2
vxorps xmm3, xmm3, xmm11
vaddps xmm0, xmm0, xmm1
vshufps xmm1, xmm6, xmm3, 0
vxorps xmm2, xmm2, xmm13
vxorps xmm0, xmm0, xmm11
vshufps xmm4, xmm2, xmm0, 0
vshufps xmm1, xmm1, xmm4, 136
vmulps xmm1, xmm1, xmm7
vpshufd xmm4, xmm1, 27
vaddps xmm1, xmm1, xmm4
vpshufd xmm4, xmm1, 65
vaddps xmm1, xmm1, xmm4
vmovaps xmm4, XMMWORD PTR .LC2[rip]
vdivps xmm1, xmm4, xmm1
vmulps xmm6, xmm6, xmm1
vmulps xmm3, xmm3, xmm1
vmulps xmm2, xmm2, xmm1
vmulps xmm1, xmm0, xmm1
vmovaps XMMWORD PTR [rsi], xmm6
vmovaps XMMWORD PTR [rsi+16], xmm3
vmovaps XMMWORD PTR [rsi+32], xmm2
vmovaps XMMWORD PTR [rsi+48], xmm1
ret
.LC0:
.long 0
.long 2147483648
.long 0
.long 2147483648
.LC1:
.long 2147483648
.long 0
.long 2147483648
.long 0
.LC2:
.long 1065353216
.long 1065353216
.long 1065353216
.long 1065353216
AVX实现输出(使用Godbolt;选项-O3 -mavx):
glm_mat4_inv_avx:
vmovaps ymm3, YMMWORD PTR [rdi]
vmovaps ymm1, YMMWORD PTR [rdi+32]
vmovdqa ymm2, YMMWORD PTR .LC1[rip]
vmovdqa ymm0, YMMWORD PTR .LC0[rip]
vperm2f128 ymm6, ymm3, ymm3, 3
vperm2f128 ymm5, ymm1, ymm1, 0
vperm2f128 ymm1, ymm1, ymm1, 17
vmovdqa ymm10, YMMWORD PTR .LC4[rip]
vpermilps ymm9, ymm5, ymm0
vpermilps ymm7, ymm1, ymm2
vperm2f128 ymm8, ymm6, ymm6, 0
vpermilps ymm1, ymm1, ymm0
vpermilps ymm5, ymm5, ymm2
vpermilps ymm0, ymm8, ymm0
vmulps ymm4, ymm7, ymm9
vpermilps ymm8, ymm8, ymm2
vpermilps ymm11, ymm6, 1
vmulps ymm2, ymm5, ymm1
vmulps ymm7, ymm0, ymm7
vmulps ymm1, ymm8, ymm1
vmulps ymm0, ymm0, ymm5
vmulps ymm5, ymm8, ymm9
vmovdqa ymm9, YMMWORD PTR .LC3[rip]
vmovdqa ymm8, YMMWORD PTR .LC2[rip]
vsubps ymm4, ymm4, ymm2
vsubps ymm7, ymm7, ymm1
vperm2f128 ymm2, ymm4, ymm4, 0
vperm2f128 ymm4, ymm4, ymm4, 17
vshufps ymm1, ymm2, ymm4, 77
vpermilps ymm1, ymm1, ymm9
vsubps ymm5, ymm0, ymm5
vpermilps ymm0, ymm2, ymm8
vmulps ymm0, ymm0, ymm11
vperm2f128 ymm1, ymm1, ymm2, 0
vshufps ymm2, ymm2, ymm4, 74
vpermilps ymm4, ymm6, 90
vmulps ymm1, ymm1, ymm4
vpermilps ymm2, ymm2, ymm10
vpermilps ymm6, ymm6, 191
vmovaps ymm11, YMMWORD PTR .LC5[rip]
vperm2f128 ymm2, ymm2, ymm2, 0
vperm2f128 ymm4, ymm3, ymm3, 0
vpermilps ymm12, ymm4, YMMWORD PTR .LC7[rip]
vmulps ymm2, ymm2, ymm6
vinsertf128 ymm6, ymm7, xmm5, 1
vperm2f128 ymm5, ymm7, ymm5, 49
vshufps ymm7, ymm6, ymm5, 77
vpermilps ymm9, ymm7, ymm9
vsubps ymm0, ymm0, ymm1
vpermilps ymm1, ymm4, YMMWORD PTR .LC6[rip]
vpermilps ymm4, ymm4, YMMWORD PTR .LC8[rip]
vaddps ymm2, ymm0, ymm2
vpermilps ymm0, ymm6, ymm8
vshufps ymm6, ymm6, ymm5, 74
vpermilps ymm6, ymm6, ymm10
vmulps ymm1, ymm1, ymm0
vmulps ymm0, ymm12, ymm9
vmulps ymm6, ymm4, ymm6
vxorps ymm2, ymm2, ymm11
vdpps ymm3, ymm3, ymm2, 255
vsubps ymm0, ymm1, ymm0
vdivps ymm2, ymm2, ymm3
vaddps ymm0, ymm0, ymm6
vxorps ymm0, ymm0, ymm11
vdivps ymm0, ymm0, ymm3
vperm2f128 ymm5, ymm2, ymm2, 3
vshufps ymm1, ymm2, ymm5, 68
vshufps ymm2, ymm2, ymm5, 238
vperm2f128 ymm4, ymm0, ymm0, 3
vshufps ymm6, ymm0, ymm4, 68
vshufps ymm0, ymm0, ymm4, 238
vshufps ymm3, ymm1, ymm6, 136
vshufps ymm1, ymm1, ymm6, 221
vinsertf128 ymm1, ymm3, xmm1, 1
vshufps ymm3, ymm2, ymm0, 136
vshufps ymm0, ymm2, ymm0, 221
vinsertf128 ymm0, ymm3, xmm0, 1
vmovaps YMMWORD PTR [rsi], ymm1
vmovaps YMMWORD PTR [rsi+32], ymm0
vzeroupper
ret
.LC0:
.long 2
.long 1
.long 1
.long 0
.long 0
.long 0
.long 0
.long 0
.LC1:
.long 3
.long 3
.long 2
.long 3
.long 2
.long 1
.long 1
.long 1
.LC2:
.long 0
.long 0
.long 1
.long 2
.long 0
.long 0
.long 1
.long 2
.LC3:
.long 0
.long 1
.long 1
.long 2
.long 0
.long 1
.long 1
.long 2
.LC4:
.long 0
.long 2
.long 3
.long 3
.long 0
.long 2
.long 3
.long 3
.LC5:
.long 0
.long 2147483648
.long 0
.long 2147483648
.long 2147483648
.long 0
.long 2147483648
.long 0
.LC6:
.long 1
.long 0
.long 0
.long 0
.long 1
.long 0
.long 0
.long 0
.LC7:
.long 2
.long 2
.long 1
.long 1
.long 2
.long 2
.long 1
.long 1
.LC8:
.long 3
.long 3
.long 3
.long 2
.long 3
.long 3
.long 3
.long 2
编辑:
我正在macOS上使用Xcode(版本10.0(10A255))(在MacBook Pro(视网膜,2012年中)15')上使用-O3优化选项来构建和运行测试。它使用clang编译测试代码。我在Godbolt中使用了GCC 8.2来查看asm(对此很抱歉),但是程序集的输出似乎很相似。
通过启用cglm选项CGLM_USE_INT_DOMAIN启用了shuffd。在查看asm时,我忘了禁用它。
#ifdef CGLM_USE_INT_DOMAIN
# define glmm_shuff1(xmm, z, y, x, w) \
_mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(xmm), \
_MM_SHUFFLE(z, y, x, w)))
#else
# define glmm_shuff1(xmm, z, y, x, w) \
_mm_shuffle_ps(xmm, xmm, _MM_SHUFFLE(z, y, x, w))
#endif
整个测试代码(标头除外):
#include <cglm/cglm.h>
#include <sys/time.h>
#include <time.h>
int
main(int argc, const char * argv[]) {
CGLM_ALIGN(32) mat4 m = GLM_MAT4_IDENTITY_INIT;
double start, end, total;
/* generate invertible matrix */
glm_translate(m, (vec3){1,2,3});
glm_rotate(m, M_PI_2, (vec3){1,2,3});
glm_translate(m, (vec3){1,2,3});
glm_mat4_print(m, stderr);
start = clock();
for (int i = 0; i < 1000000; i++) {
glm_mat4_inv_sse2(m, m);
// glm_mat4_inv_avx(m, m);
// glm_mat4_inv(m, m);
}
end = clock();
total = (float)(end - start) / CLOCKS_PER_SEC;
printf("%f secs\n\n", total);
glm_mat4_print(m, stderr);
}
编辑2:
我通过使用乘法减少了一个除法( 1 set_ps + 1 div_ps + 2 mul_ps似乎比2 div_ps 好):
旧版本:
r1 = _mm256_div_ps(r1, y4);
r2 = _mm256_div_ps(r2, y4);
新版本(使用SSE2版本是这样的部门):
y5 = _mm256_div_ps(_mm256_set1_ps(1.0f), y4);
r1 = _mm256_mul_ps(r1, y5);
r2 = _mm256_mul_ps(r2, y5);
新版本(快速版本):
y5 = _mm256_rcp_ps(y4);
r1 = _mm256_mul_ps(r1, y5);
r2 = _mm256_mul_ps(r2, y5);
现在,它比以前更好,但仍不比Ivy Bridge CPU上的SSE快。我更新了测试结果。
答案 0 :(得分:7)
您的CPU是Intel IvyBridge。
Sandybridge / IvyBridge在不同端口上具有每时钟1 mul的速度并增加了吞吐量,因此它们彼此之间不会竞争。
但是对于256位随机播放和所有FP随机播放(甚至是128位shufps
),每个时钟仅随机播放1个吞吐量。 但是,它具有每秒2次吞吐量的整数随机播放,我注意到您的编译器正在使用pshufd
作为FP指令之间的复制和随机播放。针对SSE2进行编译,尤其是在无法使用VEX编码的情况下(因此,通过替换movaps
/ movaps xmm0, xmm1
或其他方法来节省shufps xmm0, xmm0, 65
。即使AVX可用,编译器也会这样做因此它可以使用vshufps xmm0, xmm1,xmm1, 65
,但出于微体系结构的原因而明智地选择了vpshufd
,或者很幸运,或者在设计启发式/指令成本模型时就考虑到了这一点。 (我怀疑这是clang,但您没有在问题中说出任何内容,也没有显示您从中编译的C源代码。)
在Haswell及更高版本(支持AVX2,因此支持每个整数shuffle的256位版本)中,所有shuffle只能在端口5上运行。但是在仅支持AVX1的IvB中,只有FP shuffle最多可以支持256位。整数洗牌总是只有128位,并且可以在端口1或端口5上运行,因为这两个端口上都有128位洗牌执行单元。 (https://agner.org/optimize/)
我没有详细讨论过asm,因为它很长,但是如果花费更多的时间来使用更宽的向量来节省加法/乘法运算,那会比较慢。
由于您所有的改组都变为FP改组,因此它们仅在端口5上运行,而没有利用端口1。我怀疑混洗太多了,这与端口0(FP乘法)或端口1( FP添加)。
BTW,Haswell和更高版本具有两个FMA单元,每个单元分别位于p0和p1上,因此乘法具有两倍的吞吐量。 Skylake及其后运行的FP也会在这些FMA单元上添加,因此它们每个时钟吞吐量均为2。 (如果您可以有效地使用实际的FMA指令,则可以完成两倍的工作。)
此外,您的基准测试是测试延迟,而不是吞吐量,因为输入和输出是相同的m
。可能有足够的指令级并行度来限制洗牌吞吐量,但是。
像vperm2f128
和vinsertf128
这样的跨通道混洗在IvB上有2个周期延迟,而车道内混洗(包括所有128位混洗)只有一个周期延迟。英特尔的指南要求使用一个不同的数字IIRC,但是2周期是Agner Fog在依赖链中实际发现的实际测量值。 (这可能是1个周期+某种旁路延迟)。在Haswell及更高版本上,过马路的混洗是3个周期的延迟。 Why are some Haswell AVX latencies advertised by Intel as 3x slower than Sandy Bridge?
也相关:Do 128bit cross lane operations in AVX512 give better performance?有时可以通过不对齐的负载(在有用的点处切成128位的一半)来减少改组的数量,然后使用车道内的改组。对于AVX1来说,这可能很有用,因为它缺少vpermps
或其他粒度小于128位的跨车道混洗。