我使用以下代码进行了汇总:
获取每月销售总额:
summary = data.select("OrderMonthYear", "SaleAmount").groupBy("OrderMonthYear").sum().orderBy("OrderMonthYear").toDF("OrderMonthYear","SaleAmount")
将OrderMonthYear转换为整数类型:
results = summary.rdd.map(lambda r: (int(r.OrderMonthYear.replace('-','')), r.SaleAmount)).toDF(["OrderMonthYear","SaleAmount"])
但是在尝试将时间戳列转换为整数类型时出现以下错误。
> org.apache.spark.SparkException: Job aborted due to stage failure:
> Task 0 in stage 35.0 failed 1 times, most recent failure: Lost task
> 0.0 in stage 35.0 (TID 2620, localhost, executor driver): org.apache.spark.api.python.PythonException: Traceback (most recent
> call last):
>
> --------------------------------------------------------------------------- Py4JJavaError Traceback (most recent call
> last) <command-1045820357166760> in <module>()
> 3
> 4 # Convert OrderMonthYear to integer type
> ----> 5 results = summary.rdd.map(lambda r: (int(r.OrderMonthYear.replace('-','')),
> r.SaleAmount)).toDF(["OrderMonthYear","SaleAmount"])
>
> /databricks/spark/python/pyspark/sql/session.py in toDF(self, schema,
> sampleRatio)
> 58 [Row(name=u'Alice', age=1)]
> 59 """
> ---> 60 return sparkSession.createDataFrame(self, schema, sampleRatio)
> 61
> 62 RDD.toDF = toDF
>
> /databricks/spark/python/pyspark/sql/session.py in
> createDataFrame(self, data, schema, samplingRatio, verifySchema)
> 725 else:
> 726 if isinstance(data, RDD):
> --> 727 rdd, schema = self._createFromRDD(data.map(prepare), schema, samplingRatio)
> 728 else:
> 729 rdd, schema = self._createFromLocal(map(prepare, data), schema)
>
> /databricks/spark/python/pyspark/sql/session.py in
> _createFromRDD(self, rdd, schema, samplingRatio)
> 384 """
> 385 if schema is None or isinstance(schema, (list, tuple)):
> --> 386 struct = self._inferSchema(rdd, samplingRatio, names=schema)
> 387 converter = _create_converter(struct)
> 388 rdd = rdd.map(converter)
>
> /databricks/spark/python/pyspark/sql/session.py in _inferSchema(self,
> rdd, samplingRatio, names)
> 355 :return: :class:`pyspark.sql.types.StructType`
> 356 """
> --> 357 first = rdd.first()
> 358 if not first:
> 359 raise ValueError("The first row in RDD is empty, "
>
> /databricks/spark/python/pyspark/rdd.py in first(self) 1397
> ValueError: RDD is empty 1398 """
> -> 1399 rs = self.take(1) 1400 if rs: 1401 return rs[0]
>
> /databricks/spark/python/pyspark/rdd.py in take(self, num) 1379
> 1380 p = range(partsScanned, min(partsScanned +
> numPartsToTry, totalParts))
> -> 1381 res = self.context.runJob(self, takeUpToNumLeft, p) 1382 1383 items += res
>
> /databricks/spark/python/pyspark/context.py in runJob(self, rdd,
> partitionFunc, partitions, allowLocal) 1040 #
> SparkContext#runJob. 1041 mappedRDD =
> rdd.mapPartitions(partitionFunc)
> -> 1042 sock_info = self._jvm.PythonRDD.runJob(self._jsc.sc(), mappedRDD._jrdd, partitions) 1043 return
> list(_load_from_socket(sock_info, mappedRDD._jrdd_deserializer))
> 1044
>
> /databricks/spark/python/lib/py4j-0.10.7-src.zip/py4j/java_gateway.py
> in __call__(self, *args) 1255 answer =
> self.gateway_client.send_command(command) 1256 return_value
> = get_return_value(
> -> 1257 answer, self.gateway_client, self.target_id, self.name) 1258 1259 for temp_arg in temp_args:
>
> /databricks/spark/python/pyspark/sql/utils.py in deco(*a, **kw)
> 61 def deco(*a, **kw):
> 62 try:
> ---> 63 return f(*a, **kw)
> 64 except py4j.protocol.Py4JJavaError as e:
> 65 s = e.java_exception.toString()
>
> /databricks/spark/python/lib/py4j-0.10.7-src.zip/py4j/protocol.py in
> get_return_value(answer, gateway_client, target_id, name)
> 326 raise Py4JJavaError(
> 327 "An error occurred while calling {0}{1}{2}.\n".
> --> 328 format(target_id, ".", name), value)
> 329 else:
> 330 raise Py4JError(
>
> Py4JJavaError: An error occurred while calling
> z:org.apache.spark.api.python.PythonRDD.runJob. :
> org.apache.spark.SparkException: Job aborted due to stage failure:
> Task 0 in stage 35.0 failed 1 times, most recent failure: Lost task
> 0.0 in stage 35.0 (TID 2620, localhost, executor driver): org.apache.spark.api.python.PythonException: Traceback (most recent
> call last): File "/databricks/spark/python/pyspark/worker.py", line
> 262, in main
> process() File "/databricks/spark/python/pyspark/worker.py", line 257, in process
> serializer.dump_stream(func(split_index, iterator), outfile) File "/databricks/spark/python/pyspark/serializers.py", line 373, in
> dump_stream
> vs = list(itertools.islice(iterator, batch)) File "/databricks/spark/python/pyspark/rdd.py", line 1375, in
> takeUpToNumLeft
> yield next(iterator) File "/databricks/spark/python/pyspark/util.py", line 55, in wrapper
> return f(*args, **kwargs) File "<command-1045820357166760>", line 5, in <lambda> TypeError: an integer is required
>
> at
> org.apache.spark.api.python.BasePythonRunner$ReaderIterator.handlePythonException(PythonRunner.scala:317)
> at
> org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRunner.scala:457)
> at
> org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRunner.scala:440)
> at
> org.apache.spark.api.python.BasePythonRunner$ReaderIterator.hasNext(PythonRunner.scala:271)
> at
> org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
> at scala.collection.Iterator$class.foreach(Iterator.scala:893) at
> org.apache.spark.InterruptibleIterator.foreach(InterruptibleIterator.scala:28)
> at
> scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:59)
> at
> scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:104)
> at
> scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:48)
> at
> scala.collection.TraversableOnce$class.to(TraversableOnce.scala:310)
> at
> org.apache.spark.InterruptibleIterator.to(InterruptibleIterator.scala:28)
> at
> scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:302)
> at
> org.apache.spark.InterruptibleIterator.toBuffer(InterruptibleIterator.scala:28)
> at
> scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:289)
> at
> org.apache.spark.InterruptibleIterator.toArray(InterruptibleIterator.scala:28)
> at
> org.apache.spark.api.python.PythonRDD$$anonfun$3.apply(PythonRDD.scala:182)
> at
> org.apache.spark.api.python.PythonRDD$$anonfun$3.apply(PythonRDD.scala:182)
> at
> org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2181)
> at
> org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2181)
> at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
> at org.apache.spark.scheduler.Task.run(Task.scala:112) at
> org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:384)
> at
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
> at
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
> at java.lang.Thread.run(Thread.java:748)
>
> Driver stacktrace: at
> org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1747)
> at
> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1735)
> at
> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1734)
> at
> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
> at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
> at
> org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1734)
> at
> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:962)
> at
> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:962)
> at scala.Option.foreach(Option.scala:257) at
> org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:962)
> at
> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1970)
> at
> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1918)
> at
> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1906)
> at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
> at
> org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:759)
> at org.apache.spark.SparkContext.runJob(SparkContext.scala:2141) at
> org.apache.spark.SparkContext.runJob(SparkContext.scala:2162) at
> org.apache.spark.SparkContext.runJob(SparkContext.scala:2181) at
> org.apache.spark.api.python.PythonRDD$.runJob(PythonRDD.scala:182) at
> org.apache.spark.api.python.PythonRDD.runJob(PythonRDD.scala) at
> sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at
> sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
> at
> sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
> at java.lang.reflect.Method.invoke(Method.java:498) at
> py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244) at
> py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:380) at
> py4j.Gateway.invoke(Gateway.java:295) at
> py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
> at py4j.commands.CallCommand.execute(CallCommand.java:79) at
> py4j.GatewayConnection.run(GatewayConnection.java:251) at
> java.lang.Thread.run(Thread.java:748) Caused by:
> org.apache.spark.api.python.PythonException: Traceback (most recent
> call last): File "/databricks/spark/python/pyspark/worker.py", line
> 262, in main
> process() File "/databricks/spark/python/pyspark/worker.py", line 257, in process
> serializer.dump_stream(func(split_index, iterator), outfile) File "/databricks/spark/python/pyspark/serializers.py", line 373, in
> dump_stream
> vs = list(itertools.islice(iterator, batch)) File "/databricks/spark/python/pyspark/rdd.py", line 1375, in
> takeUpToNumLeft
> yield next(iterator) File "/databricks/spark/python/pyspark/util.py", line 55, in wrapper
> return f(*args, **kwargs) File "<command-1045820357166760>", line 5, in <lambda> TypeError: an integer is required
>
> at
> org.apache.spark.api.python.BasePythonRunner$ReaderIterator.handlePythonException(PythonRunner.scala:317)
> at
> org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRunner.scala:457)
> at
> org.apache.spark.api.python.PythonRunner$$anon$1.read(PythonRunner.scala:440)
> at
> org.apache.spark.api.python.BasePythonRunner$ReaderIterator.hasNext(PythonRunner.scala:271)
> at
> org.apache.spark.InterruptibleIterator.hasNext(InterruptibleIterator.scala:37)
> at scala.collection.Iterator$class.foreach(Iterator.scala:893) at
> org.apache.spark.InterruptibleIterator.foreach(InterruptibleIterator.scala:28)
> at
> scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:59)
> at
> scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:104)
> at
> scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:48)
> at
> scala.collection.TraversableOnce$class.to(TraversableOnce.scala:310)
> at
> org.apache.spark.InterruptibleIterator.to(InterruptibleIterator.scala:28)
> at
> scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:302)
> at
> org.apache.spark.InterruptibleIterator.toBuffer(InterruptibleIterator.scala:28)
> at
> scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:289)
> at
> org.apache.spark.InterruptibleIterator.toArray(InterruptibleIterator.scala:28)
> at
> org.apache.spark.api.python.PythonRDD$$anonfun$3.apply(PythonRDD.scala:182)
> at
> org.apache.spark.api.python.PythonRDD$$anonfun$3.apply(PythonRDD.scala:182)
> at
> org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2181)
> at
> org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:2181)
> at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
> at org.apache.spark.scheduler.Task.run(Task.scala:112) at
> org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:384)
> at
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
> at
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
> ... 1 more
感谢您的支持。谢谢!
答案 0 :(得分:0)
我认为您的数据如下所示;
>>> summary.select("OrderMonthYear","SaleAmount").show()
+--------------------+----------+
| OrderMonthYear|SaleAmount|
+--------------------+----------+
|2009-01-01T00:00:...| 10|
|2009-02-01T00:00:...| 50|
+--------------------+----------+
因此您可以使用sql函数将日期字段转换为整数
>>> import pyspark.sql.functions as F
>>> summary.withColumn('OrderMonthYear',F.date_format(F.to_date(F.substring('OrderMonthYear',1,10),'yyyy-MM-dd'),'yyyyMMdd').cast('integer')).show()
+--------------+----------+
|OrderMonthYear|SaleAmount|
+--------------+----------+
| 20090101| 10|
| 20090201| 50|
+--------------+----------+
由于Spark版本的缘故,它可能无法正常工作。如果出现错误,请尝试以下
>>> summary.withColumn('OrderMonthYear',F.date_format(F.to_date( \
... F.unix_timestamp(F.substring('OrderMonthYear',1,10),'yyyy-MM-dd'). \
... cast('timestamp')),'yyyyMMdd').cast('integer')).show()
+--------------+----------+
|OrderMonthYear|SaleAmount|
+--------------+----------+
| 20090101| 10|
| 20090201| 50|
+--------------+----------+
答案 1 :(得分:0)
您正在尝试对可识别时区的日期对象执行整数和替换操作。 .replace('-','')
方法引起错误,因为您的时区为+0000。相反,请尝试以下操作:
results = summary.rdd.map(lambda r: (int(str(r.OrderMonthYear)[:4]), r.SaleAmount)).toDF(["OrderMonthYear","SaleAmount"])
希望这行得通。
答案 2 :(得分:0)
results = summary.rdd.map(lambda r: (int(str(r.OrderMonthYear)[:10].replace('-','')), r.SaleAmount)).toDF(["OrderMonthYear","SaleAmount"])