Concat数组的DataFrame列的元素

时间:2016-11-13 16:29:21

标签: scala apache-spark spark-dataframe

我有一个Dataframe df1格式如下:

+--------------------------+
|DateInfos                 |
+--------------------------+
|[[3, A, 111], [4, B, 222]]|
|[[1, C, 333], [2, D, 444]]|
|[[5, E, 555]]             |
+--------------------------+

我想用分隔符“ - ”(df2)连接每个tuples3的第二个和第三个元素:

+------------------------+
|DateInfos               |
+------------------------+
|[[3, A-111], [4, B-222]]|
|[[1, C-333], [2, D-444]]|
|[[5, E-555]]            |
+------------------------+

我打印df1的架构:

root
 |-- DateInfos: array (nullable = true)
 |    |-- element: struct (containsNull = true)
 |    |    |-- _1: integer (nullable = false)
 |    |    |-- _2: string (nullable = true)
 |    |    |-- _3: string (nullable = true)

我假设我必须创建一个使用具有以下签名的函数的udf:

def concatDF1(array: Array[(Int, String, String)]): Array[(Int, String)] = {
   val res = Array.map(elem => (elem._1, elem._2 + "-" + elem._3)).toArray
   res
}

我执行这样的方法:

val concat_udf = sqlContext.udf.register("concat_udf", concat _)
val df2_temp = df1.withColumn("DataInfos_temp",concat_udf(df1("DataInfos")))
val df2 = df2_temp.drop("DataInfos").withColumnRenamed("DataInfos_temp", "DataInfos")

我收到此错误:

Caused by: org.apache.spark.SparkException: Failed to execute user defined function(anonfun$4: (array<struct<_1:int,_2:string,_3:string>>) => array<struct<_1:int,_2:string>>)

你有什么想法吗?

1 个答案:

答案 0 :(得分:1)

这应该做的工作:

import org.apache.spark.sql._
import org.apache.spark.sql.functions._

val sparkSession = ...
import sparkSession.implicits._

val input = sc.parallelize(Seq(
  Seq((3, "A", 111), (4, "B", 222)),
  Seq((1, "C", 333), (2, "D", 444)),
  Seq((5, "E", 555))
)).toDF("DateInfos")

val concatElems = udf { seq: Seq[Row] =>
  seq.map { case Row(x: Int, y: String, z: Int) => 
    (x, s"$y-$z")
  }
}

val output = input.select(concatElems($"DateInfos").as("DateInfos"))

output.show(truncate = false)

哪个输出:

+----------------------+
|DateInfos             |
+----------------------+
|[[3,A-111], [4,B-222]]|
|[[1,C-333], [2,D-444]]|
|[[5,E-555]]           |
+----------------------+