如何在2D中绘制透视正确的网格

时间:2009-02-09 22:41:03

标签: algorithm graphics geometry 2d augmented-reality

我有一个应用程序在图像/照片上定义一个真实世界的矩形,当然在2D中它可能不是一个矩形,因为你从一个角度看它。

问题是,矩形需要在其上绘制网格线,例如,如果它是3x5,那么我需要从第1侧到第3侧绘制2条线,从第2侧到第4条绘制4条线。

到目前为止,我将每条线分成等距部分,以获得所有网格线的起点和终点。然而,矩形越大,角度越大,这些线越“不正确”,因为离你越近的水平线应该更靠近。

有谁知道我应该搜索的算法的名称?

是的我知道你可以用3D来做到这一点,但是对于这个特定的应用程序我只能使用2D。

11 个答案:

答案 0 :(得分:15)

Here's解决方案。

基本思路是通过对角连接角可以找到矩形的透视正确“中心”。两条结果线的交点是您的透视正确中心。从那里你将你的矩形细分为四个较小的矩形,然后重复这个过程。次数取决于您想要的准确度。您可以细分到像素大小的下方,以获得有效完美的视角。

然后在您的子矩形中,您只需应用标准的未经修正的“纹理”三角形,或矩形等等。

您可以执行此算法,而无需解决构建“真实”3D世界的复杂问题。它也很好,如果你有一个真正的3D世界建模,但你的textriangles没有在硬件中进行透视校正,或者你需要一种高效的方法来获得透视正确的平面,而不是每个像素渲染技巧。

答案 1 :(得分:6)

image description 图像:双线性和双线性的例子。透视变换(注意:顶部和底部水平网格线的高度实际上是两幅图上其余线高度的一半)

========================================

我知道这是一个老问题,但我有一个通用的解决方案,所以我决定发布它,它将对未来的读者有用。 下面的代码可以绘制任意透视网格,而无需重复计算。

我实际上遇到了类似的问题:绘制2D透视网格,然后转换下划线图像以恢复透视。

我开始在这里阅读: http://www.imagemagick.org/Usage/distorts/#bilinear_forward

然后在这里(Leptonica图书馆): http://www.leptonica.com/affine.html

我发现了这个:

  

从某个任意方向观察平面中的物体时   在有限的距离内,你会得到一个额外的“梯形失真”失真   图片。这是一种投射变换,它保持直线   笔直,但不保持线之间的角度。这种翘曲   不能用线性仿射变换来描述,事实上   不同的是分母中的x和y依赖项。

转型不是线性的,正如许多人已经在这个帖子中指出的那样。它涉及求解8个方程的线性系统(一次)来计算8个所需系数,然后你可以用它们来转换任意数量的点。

为了避免在我的项目中包含所有Leptonica库,我从中获取了一些代码,我删除了所有特殊的Leptonica数据类型&宏,我修复了一些内存泄漏,并将其转换为C ++类(主要是出于封装原因),这只做了一件事: 它将(Qt)QPointF float(x,y)坐标映射到相应的Perspective Coordinate。

如果要将代码调整到另一个C ++库,重新定义/替换的唯一方法是QPointF坐标类。

我希望未来的读者能发现它有用。 下面的代码分为3部分:

一个。关于如何使用genImageProjective C ++类绘制2D透视网格

的示例

B中。 genImageProjective.h文件

℃。 genImageProjective.cpp文件

//============================================================
// C++ Code Example on how to use the 
//     genImageProjective class to draw a perspective 2D Grid
//============================================================

#include "genImageProjective.h"

// Input: 4 Perspective-Tranformed points:
//        perspPoints[0] = top-left
//        perspPoints[1] = top-right
//        perspPoints[2] = bottom-right
//        perspPoints[3] = bottom-left
void drawGrid(QPointF *perspPoints)
{
(...)
        // Setup a non-transformed area rectangle
        // I use a simple square rectangle here because in this case we are not interested in the source-rectangle,
        //  (we want to just draw a grid on the perspPoints[] area)
        //   but you can use any arbitrary rectangle to perform a real mapping to the perspPoints[] area
        QPointF topLeft = QPointF(0,0);
        QPointF topRight = QPointF(1000,0);
        QPointF bottomRight = QPointF(1000,1000);
        QPointF bottomLeft = QPointF(0,1000);
        float width = topRight.x() - topLeft.x();
        float height = bottomLeft.y() - topLeft.y();

        // Setup Projective trasform object
        genImageProjective imageProjective;
        imageProjective.sourceArea[0] = topLeft;
        imageProjective.sourceArea[1] = topRight;
        imageProjective.sourceArea[2] = bottomRight;
        imageProjective.sourceArea[3] = bottomLeft;
        imageProjective.destArea[0] = perspPoints[0];
        imageProjective.destArea[1] = perspPoints[1];
        imageProjective.destArea[2] = perspPoints[2];
        imageProjective.destArea[3] = perspPoints[3];
        // Compute projective transform coefficients
        if (imageProjective.computeCoeefficients() != 0)
            return; // This can actually fail if any 3 points of Source or Dest are colinear

        // Initialize Grid parameters (without transform)
        float gridFirstLine = 0.1f; // The normalized position of first Grid Line (0.0 to 1.0)
        float gridStep = 0.1f;      // The normalized Grd size (=distance between grid lines: 0.0 to 1.0)

        // Draw Horizonal Grid lines
        QPointF lineStart, lineEnd, tempPnt;
        for (float pos = gridFirstLine; pos <= 1.0f; pos += gridStep)
        {
            // Compute Grid Line Start
            tempPnt = QPointF(topLeft.x(), topLeft.y() + pos*width);
            imageProjective.mapSourceToDestPoint(tempPnt, lineStart);
            // Compute Grid Line End
            tempPnt = QPointF(topRight.x(), topLeft.y() + pos*width);
            imageProjective.mapSourceToDestPoint(tempPnt, lineEnd);

            // Draw Horizontal Line (use your prefered method to draw the line)
            (...)
        }
        // Draw Vertical Grid lines
        for (float pos = gridFirstLine; pos <= 1.0f; pos += gridStep)
        {
            // Compute Grid Line Start
            tempPnt = QPointF(topLeft.x() + pos*height, topLeft.y());
            imageProjective.mapSourceToDestPoint(tempPnt, lineStart);
            // Compute Grid Line End
            tempPnt = QPointF(topLeft.x() + pos*height, bottomLeft.y());
            imageProjective.mapSourceToDestPoint(tempPnt, lineEnd);

            // Draw Vertical Line (use your prefered method to draw the line)
            (...)
        }
(...)
}

==========================================



//========================================
//C++ Header File: genImageProjective.h
//========================================

#ifndef GENIMAGE_H
#define GENIMAGE_H

#include <QPointF>

// Class to transform an Image Point using Perspective transformation
class genImageProjective
{
public:
    genImageProjective();

    int computeCoeefficients(void);
    int mapSourceToDestPoint(QPointF& sourcePoint, QPointF& destPoint);

public:
    QPointF sourceArea[4]; // Source Image area limits (Rectangular)
    QPointF destArea[4];   // Destination Image area limits (Perspectivelly Transformed)

private:
    static int gaussjordan(float  **a, float  *b, int n);

    bool coefficientsComputed;
    float vc[8];           // Vector of Transform Coefficients
};

#endif // GENIMAGE_H
//========================================


//========================================
//C++ CPP File: genImageProjective.cpp
//========================================

#include <math.h>
#include "genImageProjective.h"

// ----------------------------------------------------
// class genImageProjective
// ----------------------------------------------------
genImageProjective::genImageProjective()
{
    sourceArea[0] = sourceArea[1] = sourceArea[2] = sourceArea[3] = QPointF(0,0);
    destArea[0] = destArea[1] = destArea[2] = destArea[3] = QPointF(0,0);
    coefficientsComputed = false;
}


// --------------------------------------------------------------
// Compute projective transform coeeeficients
// RetValue: 0: Success, !=0: Error
/*-------------------------------------------------------------*
 *                Projective coordinate transformation         *
 *-------------------------------------------------------------*/
/*!
 *  computeCoeefficients()
 *
 *      Input:  this->sourceArea[4]: (source 4 points; unprimed)
 *              this->destArea[4]:   (transformed 4 points; primed)
 *              this->vc  (computed vector of transform coefficients)
 *      Return: 0 if OK; <0 on error
 *
 *  We have a set of 8 equations, describing the projective
 *  transformation that takes 4 points (sourceArea) into 4 other
 *  points (destArea).  These equations are:
 *
 *          x1' = (c[0]*x1 + c[1]*y1 + c[2]) / (c[6]*x1 + c[7]*y1 + 1)
 *          y1' = (c[3]*x1 + c[4]*y1 + c[5]) / (c[6]*x1 + c[7]*y1 + 1)
 *          x2' = (c[0]*x2 + c[1]*y2 + c[2]) / (c[6]*x2 + c[7]*y2 + 1)
 *          y2' = (c[3]*x2 + c[4]*y2 + c[5]) / (c[6]*x2 + c[7]*y2 + 1)
 *          x3' = (c[0]*x3 + c[1]*y3 + c[2]) / (c[6]*x3 + c[7]*y3 + 1)
 *          y3' = (c[3]*x3 + c[4]*y3 + c[5]) / (c[6]*x3 + c[7]*y3 + 1)
 *          x4' = (c[0]*x4 + c[1]*y4 + c[2]) / (c[6]*x4 + c[7]*y4 + 1)
 *          y4' = (c[3]*x4 + c[4]*y4 + c[5]) / (c[6]*x4 + c[7]*y4 + 1)
 *
 *  Multiplying both sides of each eqn by the denominator, we get
 *
 *           AC = B
 *
 *  where B and C are column vectors
 *
 *         B = [ x1' y1' x2' y2' x3' y3' x4' y4' ]
 *         C = [ c[0] c[1] c[2] c[3] c[4] c[5] c[6] c[7] ]
 *
 *  and A is the 8x8 matrix
 *
 *             x1   y1     1     0   0    0   -x1*x1'  -y1*x1'
 *              0    0     0    x1   y1   1   -x1*y1'  -y1*y1'
 *             x2   y2     1     0   0    0   -x2*x2'  -y2*x2'
 *              0    0     0    x2   y2   1   -x2*y2'  -y2*y2'
 *             x3   y3     1     0   0    0   -x3*x3'  -y3*x3'
 *              0    0     0    x3   y3   1   -x3*y3'  -y3*y3'
 *             x4   y4     1     0   0    0   -x4*x4'  -y4*x4'
 *              0    0     0    x4   y4   1   -x4*y4'  -y4*y4'
 *
 *  These eight equations are solved here for the coefficients C.
 *
 *  These eight coefficients can then be used to find the mapping
 *  (x,y) --> (x',y'):
 *
 *           x' = (c[0]x + c[1]y + c[2]) / (c[6]x + c[7]y + 1)
 *           y' = (c[3]x + c[4]y + c[5]) / (c[6]x + c[7]y + 1)
 *
 */
int genImageProjective::computeCoeefficients(void)
{
    int retValue = 0;
    int     i;
    float  *a[8];  /* 8x8 matrix A  */
    float  *b = this->vc; /* rhs vector of primed coords X'; coeffs returned in vc[] */

    b[0] = destArea[0].x();
    b[1] = destArea[0].y();
    b[2] = destArea[1].x();
    b[3] = destArea[1].y();
    b[4] = destArea[2].x();
    b[5] = destArea[2].y();
    b[6] = destArea[3].x();
    b[7] = destArea[3].y();

    for (i = 0; i < 8; i++)
        a[i] = NULL;
    for (i = 0; i < 8; i++)
    {
        if ((a[i] = (float *)calloc(8, sizeof(float))) == NULL)
        {
            retValue = -100; // ERROR_INT("a[i] not made", procName, 1);
            goto Terminate;
        }
    }

    a[0][0] = sourceArea[0].x();
    a[0][1] = sourceArea[0].y();
    a[0][2] = 1.;
    a[0][6] = -sourceArea[0].x() * b[0];
    a[0][7] = -sourceArea[0].y() * b[0];
    a[1][3] = sourceArea[0].x();
    a[1][4] = sourceArea[0].y();
    a[1][5] = 1;
    a[1][6] = -sourceArea[0].x() * b[1];
    a[1][7] = -sourceArea[0].y() * b[1];
    a[2][0] = sourceArea[1].x();
    a[2][1] = sourceArea[1].y();
    a[2][2] = 1.;
    a[2][6] = -sourceArea[1].x() * b[2];
    a[2][7] = -sourceArea[1].y() * b[2];
    a[3][3] = sourceArea[1].x();
    a[3][4] = sourceArea[1].y();
    a[3][5] = 1;
    a[3][6] = -sourceArea[1].x() * b[3];
    a[3][7] = -sourceArea[1].y() * b[3];
    a[4][0] = sourceArea[2].x();
    a[4][1] = sourceArea[2].y();
    a[4][2] = 1.;
    a[4][6] = -sourceArea[2].x() * b[4];
    a[4][7] = -sourceArea[2].y() * b[4];
    a[5][3] = sourceArea[2].x();
    a[5][4] = sourceArea[2].y();
    a[5][5] = 1;
    a[5][6] = -sourceArea[2].x() * b[5];
    a[5][7] = -sourceArea[2].y() * b[5];
    a[6][0] = sourceArea[3].x();
    a[6][1] = sourceArea[3].y();
    a[6][2] = 1.;
    a[6][6] = -sourceArea[3].x() * b[6];
    a[6][7] = -sourceArea[3].y() * b[6];
    a[7][3] = sourceArea[3].x();
    a[7][4] = sourceArea[3].y();
    a[7][5] = 1;
    a[7][6] = -sourceArea[3].x() * b[7];
    a[7][7] = -sourceArea[3].y() * b[7];

    retValue = gaussjordan(a, b, 8);

Terminate:
    // Clean up
    for (i = 0; i < 8; i++)
    {
        if (a[i])
            free(a[i]);
    }

    this->coefficientsComputed = (retValue == 0);
    return retValue;
}


/*-------------------------------------------------------------*
 *               Gauss-jordan linear equation solver           *
 *-------------------------------------------------------------*/
/*
 *  gaussjordan()
 *
 *      Input:   a  (n x n matrix)
 *               b  (rhs column vector)
 *               n  (dimension)
 *      Return:  0 if ok, 1 on error
 *
 *      Note side effects:
 *            (1) the matrix a is transformed to its inverse
 *            (2) the vector b is transformed to the solution X to the
 *                linear equation AX = B
 *
 *      Adapted from "Numerical Recipes in C, Second Edition", 1992
 *      pp. 36-41 (gauss-jordan elimination)
 */
#define  SWAP(a,b)   {temp = (a); (a) = (b); (b) = temp;}
int genImageProjective::gaussjordan(float  **a, float  *b, int n)
{
    int retValue = 0;
    int i, icol=0, irow=0, j, k, l, ll;
    int *indexc = NULL, *indexr = NULL, *ipiv = NULL;
    float  big, dum, pivinv, temp;

    if (!a)
    {
        retValue = -1; // ERROR_INT("a not defined", procName, 1);
        goto Terminate;
    }
    if (!b)
    {
        retValue = -2; // ERROR_INT("b not defined", procName, 1);
        goto Terminate;
    }

    if ((indexc = (int *)calloc(n, sizeof(int))) == NULL)
    {
        retValue = -3; // ERROR_INT("indexc not made", procName, 1);
        goto Terminate;
    }
    if ((indexr = (int *)calloc(n, sizeof(int))) == NULL)
    {
        retValue = -4; // ERROR_INT("indexr not made", procName, 1);
        goto Terminate;
    }
    if ((ipiv = (int *)calloc(n, sizeof(int))) == NULL)
    {
        retValue = -5; // ERROR_INT("ipiv not made", procName, 1);
        goto Terminate;
    }

    for (i = 0; i < n; i++)
    {
        big = 0.0;
        for (j = 0; j < n; j++)
        {
            if (ipiv[j] != 1)
            {
                for (k = 0; k < n; k++)
                {
                    if (ipiv[k] == 0)
                    {
                        if (fabs(a[j][k]) >= big)
                        {
                            big = fabs(a[j][k]);
                            irow = j;
                            icol = k;
                        }
                    }
                    else if (ipiv[k] > 1)
                    {
                        retValue = -6; // ERROR_INT("singular matrix", procName, 1);
                        goto Terminate;
                    }
                }
            }
        }
        ++(ipiv[icol]);

        if (irow != icol)
        {
            for (l = 0; l < n; l++)
                SWAP(a[irow][l], a[icol][l]);
            SWAP(b[irow], b[icol]);
        }

        indexr[i] = irow;
        indexc[i] = icol;
        if (a[icol][icol] == 0.0)
        {
            retValue = -7; // ERROR_INT("singular matrix", procName, 1);
            goto Terminate;
        }
        pivinv = 1.0 / a[icol][icol];
        a[icol][icol] = 1.0;
        for (l = 0; l < n; l++)
            a[icol][l] *= pivinv;
        b[icol] *= pivinv;

        for (ll = 0; ll < n; ll++)
        {
            if (ll != icol)
            {
                dum = a[ll][icol];
                a[ll][icol] = 0.0;
                for (l = 0; l < n; l++)
                    a[ll][l] -= a[icol][l] * dum;
                b[ll] -= b[icol] * dum;
            }
        }
    }

    for (l = n - 1; l >= 0; l--)
    {
        if (indexr[l] != indexc[l])
        {
            for (k = 0; k < n; k++)
                SWAP(a[k][indexr[l]], a[k][indexc[l]]);
        }
    }

Terminate:
    if (indexr)
        free(indexr);
    if (indexc)
        free(indexc);
    if (ipiv)
        free(ipiv);
    return retValue;
}


// --------------------------------------------------------------
// Map a source point to destination using projective transform
// --------------------------------------------------------------
// Params:
//  sourcePoint: initial point
//  destPoint:   transformed point
// RetValue: 0: Success, !=0: Error
// --------------------------------------------------------------
//  Notes:
//   1. You must call once computeCoeefficients() to compute
//      the this->vc[] vector of 8 coefficients, before you call
//      mapSourceToDestPoint().
//   2. If there was an error or the 8 coefficients were not computed,
//      a -1 is returned and destPoint is just set to sourcePoint value.
// --------------------------------------------------------------
int genImageProjective::mapSourceToDestPoint(QPointF& sourcePoint, QPointF& destPoint)
{
    if (coefficientsComputed)
    {
        float factor = 1.0f / (vc[6] * sourcePoint.x() + vc[7] * sourcePoint.y() + 1.);
        destPoint.setX( factor * (vc[0] * sourcePoint.x() + vc[1] * sourcePoint.y() + vc[2]) );
        destPoint.setY( factor * (vc[3] * sourcePoint.x() + vc[4] * sourcePoint.y() + vc[5]) );
        return 0;
    }
    else // There was an error while computing coefficients
    {
        destPoint = sourcePoint; // just copy the source to destination...
        return -1;               // ...and return an error
    }
}
//========================================

答案 2 :(得分:3)

虽然我的google-fu未能提供任何坚如磐石的数学解决方案,但也许我发现的这张图可能会有所帮助。

http://studiochalkboard.evansville.edu/lp-diminish.html

我认为实际上很难自己想出正确的数学,这可能是某种对数或求和表达式。希望该链接上的绘图和术语可以为您提供更多可搜索的内容。

答案 3 :(得分:3)

使用布列塔尼的细分方法(与Mongo的扩展方法相关),将为您提供准确的任意二次幂分割。要使用这些方法拆分为非幂次除法,您必须细分为子像素间距,这在计算上可能很昂贵。

但是,我相信您可以应用Haga's Theorem的变体(在折纸中用于将一侧划分为Nths,并将其划分为(N-1)个)到透视平方细分从最接近2的幂产生任意除法而不必继续细分。

答案 4 :(得分:1)

最优雅,最快速的解决方案是找到单应矩阵,将矩形坐标映射到照片坐标。

只要你知道你的数学,有了一个像样的矩阵库,这不应该是一项艰巨的任务。

关键词:Collineation,Homography,Direct Linear Transformation

但是,上面的递归算法应该可以工作,但是如果你的资源有限,投影几何是最好的方法。

答案 5 :(得分:0)

在特殊情况中,当您看到与第1和第3边垂直时,可以将这些边分成相等的部分。然后绘制一条对角线,并通过前面绘制的对角线和分界线的每个交点画出与第1侧的平行线。

答案 6 :(得分:0)

这是我想到的几何解决方案。我不知道&#39;算法&#39;有一个名字。

假设您想首先划分&#39;矩形&#39;首先用垂直线分成n个部分。

目标是将点P1..Pn-1放置在顶行,我们可以使用这些点将线穿过它们到达左右线相交或平行于它们的点,此时此点不存在。 / p>

如果顶部和底部线彼此平行,只需放置一些点,以便等距地分割角落之间的顶线。

另外,在左边的n点Q1..Qn处,使得theese和左上角等距,并且i < j =&gt;齐比Qj更接近左上角。 为了将Q点映射到顶行,找到从Qn到右上角的线的交点S,并且通过顶线和底线的交点找到与左线平行的线。现在将S连接到Q1..Qn-1。新线与顶线的交点是想要的P点。

对水平线做这个模拟。

答案 7 :(得分:0)

给定围绕y轴的旋转,特别是如果旋转表面是平面的,则透视由垂直渐变生成。这些在视角上逐渐接近。而不是使用对角线来定义四个矩形,这可以在两个幂的情况下工作...定义两个矩形,左和右。如果继续将表面划分为更窄的垂直段,它们将高于宽度。这可以容纳非方形的表面。如果旋转围绕x轴,则需要水平梯度。

答案 8 :(得分:0)

我认为所选答案并非最佳解决方案。更好的解决方案是将矩形的透视(投影)变换应用于简单网格,如下面的Matlab脚本和图像显示。您也可以使用C ++和OpenCV实现此算法。

function drawpersgrid
sz      = [ 24, 16 ]; % [x y]
srcpt   = [ 0 0; sz(1) 0; 0 sz(2); sz(1) sz(2)];
destpt  = [ 20 50; 100 60; 0 150; 200 200;];

% make rectangular grid
[X,Y]   = meshgrid(0:sz(1),0:sz(2));

% find projective transform matching corner points
tform   = maketform('projective',srcpt,destpt);

% apply the projective transform to the grid
[X1,Y1] = tformfwd(tform,X,Y);

hold on;

%% find grid

for i=1:sz(2)
    for j=1:sz(1)
        x = [ X1(i,j);X1(i,j+1);X1(i+1,j+1);X1(i+1,j);X1(i,j)];
        y = [ Y1(i,j);Y1(i,j+1);Y1(i+1,j+1);Y1(i+1,j);Y1(i,j)];
        plot(x,y,'b');
    end
end
hold off;

Projective grid

答案 9 :(得分:-1)

问题在于它正在从3D转变为2D。

Here是一个关于如何完成的教程。

答案 10 :(得分:-1)

您需要做的是在3D(世界)中表示它,然后将其投影到2D(屏幕)。

这将要求您使用4D变换矩阵,将4D均匀投影到3D均匀矢量,然后将其转换为2D屏幕空间矢量。

我也无法在谷歌找到它,但是一本好的计算机图形书籍会有详细信息。

关键词是投影矩阵,投影变换,仿射变换,齐次向量,世界空间,屏幕空间,透视变换,三维变换

顺便说一句,这通常需要几个讲座来解释所有这些。祝你好运。