情感分析,朴素贝叶斯准确性

时间:2018-10-28 19:59:35

标签: python sentiment-analysis naivebayes

我正试图形成Naive Bayes分类器脚本,以对推文进行情感分类。我将整个代码粘贴到这里,因为我知道如果不这样做,我会陷入困境。因此,基本上,我将NLTK的语料库用作训练数据,然后将一些我收集的推文用作测试数据。我对其进行预处理,然后提取一袋单词。分类器训练没有问题,当我执行以下操作时

print(classifier.classify(bag_of_words('This is magnificent')))  

它正确输出'pos'。

现在我的问题是如何使用ntlk.util精度来计算精度。我会

print(nltk.classify.accuracy(classifier, proc_set))

,我收到以下错误消息:

  File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-   packages/nltk/classify/util.py", line 87, in accuracy
  results = classifier.classify_many([fs for (fs, l) in gold])
  AttributeError: 'NaiveBayesClassifier' object has no attribute 'classify_many'

我也尝试过

test_set_final=[]
for tweet in proc_test:
test_set_final.append((bag_of_words(tweet),   classifier.classify(bag_of_words(tweet))))

print(nltk.classify.accuracy(classifier, test_set_final))

我遇到同样的错误

print(nltk.classify.accuracy(classifier, test_set_final))
File "/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/nltk/classify/util.py", line 87, in accuracy
results = classifier.classify_many([fs for (fs, l) in gold])
AttributeError: 'NaiveBayesClassifier' object has no attribute 'classify_many'

我100%缺少对机器学习者来说非常明显的东西。我想t但是已经过去了3天,我正在慢慢失去理智,所以我们将不胜感激。

代码->

import nltk
import ast
import string
import re
import csv
import textblob
import pandas as pd
import numpy as np
import itertools
from textblob import TextBlob
from textblob import Word
from textblob.classifiers import NaiveBayesClassifier
from nltk.corpus import twitter_samples
from nltk.corpus import stopwords
from nltk.corpus import wordnet as wd
from nltk.tokenize import word_tokenize
from sklearn.feature_extraction.text import CountVectorizer
from random import shuffle
from nltk.classify.util import accuracy
from autocorrect import spell

stopwords = stopwords.words('english')
lemmatizer = nltk.WordNetLemmatizer().lemmatize
punct=['"','$','%','&','\',''','(',')','+',',','-     ','.','/',':',';','<','=','>','@','[','\',','^','_','`','{','|','}','~']

emoticons_happy = set([
':)', ';)', ':o)', ':]', ':3', ':c)', ':>', '=]', '8)', '=)', ':}',
':^)', ':-D', ':D', ': D','8-D', '8D', 'x-D', 'xD', 'X-D', 'XD', '=-D', '=D',
'=-3', '=3', ':-))', ':-)', ":'-)", ":')", ':*', ':^*', '>:P', ':-P', ':P', 'X-P',
'x-p', 'xp', 'XP', ':-p', ':p', '=p', ':-b', ':b', '>:)', '>;)', '>:-)',
'<3',':*', ':p'
])

emoticons_sad = set([
':L', ':-/', '>:/', ':S', '>:[', ':@', ':-(', ':[', ':-||', '=L', ':<',
':-[', ':-<', '=\\', '=/', '>:(', ':-(', '>.<', ":'-(", ":'(", ':\\', ':-c',
':c', ':{', '>:\\', ';('
])
emoticons = emoticons_happy.union(emoticons_sad)


def pre_process(tweet):

    tweet = re.sub(r'https?:\/\/.*[\r\n]*', '', tweet)

    tweet = re.sub(r'#', '', tweet)

    tweet=''.join([i for i in tweet if not i.isdigit()])

    tweet=re.sub(r'([.,/#!$%^&*;:{}=_`~-])([.,/#!$%^&*;:{}=_`~-]+)\1+', r'\1',tweet)

    tweet = re.sub(r'@[A-Za-z0-9]+', '', tweet)

    tweet=''.join([i for i in tweet if i not in emoticons])

    tweet=''.join([i for i in tweet if i not in punct])

    tweet=' '.join([i for i in tweet.split() if i not in stopwords])

    tweet=tweet.lower()

    tweet=lemmatize(tweet)

    return tweet

def get_wordnet_pos(treebank_tag):
    if treebank_tag.startswith('J'):
        return wd.ADJ
    elif treebank_tag.startswith('V'):
        return wd.VERB
    elif treebank_tag.startswith('N'):
        return wd.NOUN
    elif treebank_tag.startswith('R'):
        return wd.ADV
    else:
        return wd.NOUN

def lemmatize(tt):
    pos = nltk.pos_tag(nltk.word_tokenize(tt))
    lemm = [lemmatizer(sw[0], get_wordnet_pos(sw[1])) for sw in pos]
    sentence= ' '.join([i for i in lemm])

    return sentence


test_tweets=[]
file=open('scraped_tweets.csv', 'r')
reader = csv.reader(file)
for line in reader:
    line=line[1]
    test_tweets.append(line)

pos_tweets = twitter_samples.strings('positive_tweets.json')
neg_tweets = twitter_samples.strings('negative_tweets.json')



proc_train_pos=[]
for tweet in pos_tweets:
    proc_train_pos.append(pre_process(tweet))
proc_train_neg=[]
for tweet in neg_tweets:
    proc_train_neg.append(pre_process(tweet))
proc_test=[]
for tweet in test_tweets:
    proc_test.append(pre_process(tweet))


def bag_of_words(tweet):
    words_dictionary = dict([word, True] for word in tweet.split())    
    return words_dictionary

pos_tweets_set = []
for tweet in proc_train_pos:
    pos_tweets_set.append((bag_of_words(tweet), 'pos'))    

neg_tweets_set = []
for tweet in proc_train_neg:
    neg_tweets_set.append((bag_of_words(tweet), 'neg'))

shuffle(pos_tweets_set)
shuffle(neg_tweets_set)
train_set = pos_tweets_set+neg_tweets_set

classifier = NaiveBayesClassifier(train_set)
print('Training is done')

#print(classifier.classify(bag_of_words('This is magnificent'))) #output 'pos'

print(nltk.classify.accuracy(classifier, proc_set))

2 个答案:

答案 0 :(得分:0)

好吧,正如错误消息所言,您尝试使用的分类器(NaiveBayesClassifier)没有classify_many函数所需的方法nltk.classify.util.accuracy

(参考:https://www.nltk.org/_modules/nltk/classify/naivebayes.html

现在,这看起来像是NLTK错误,但是您可以自己轻松地获得答案:

from sklearn.metrics import accuracy_score

y_predicted = [classifier.classify(x) for x in proc_set]

accuracy = accuracy_score(y_true, y_predicted)

y_true是与proc_set输入相对应的情感值(不过,在上面显示的代码中我实际上看不到您创建的情感值)。

希望有帮助。

编辑:

或者,不使用sklearn精度函数,而使用纯Python:

hits = [yp == yt for yp, yt in zip(y_predicted, y_true)]

accuracy = sum(hits)/len(hits)

答案 1 :(得分:0)

三个简单的想法(由于我没有您的数据,因此无需自己重新运行所有代码):

1)我在上面的代码中看不到proc_set。我是想念它,还是那个错误?

2)我已经看到了语法classifier.accuracy(proc_set),所以我尝试这样做只是因为它很简单。这似乎一步就可以完成实际的分类和准确性。

3)如果不起作用:classifier.classify(proc_set)是否起作用?如果是这样,您可以选择自己计算准确性,这很简单。