我一直在努力实现以下目标: Example
到目前为止,这是我尝试过的:
crimes.Month = pd.to_datetime(crimes.Month, format='%Y/%m')
crimes.index = pd.DatetimeIndex(crimes.Month)
import numpy as np
crimes_count_date = crimes.pivot_table('Month', aggfunc=np.size,columns='Crime type', index=crimes.index.date, fill_value=0)
crimes_count_date.index = pd.DatetimeIndex(crimes_count_date.index)
plo = crimes_count_date.rolling(365).sum().plot(figsize=(12, 30),subplots=True, layout=(-1, 3), sharex=False, sharey=False)
注意-我想每年/每月在x轴上显示:2017/08
下面的当前输出未显示所有月份/年份或犯罪类型的所有行 Current Ouput
答案 0 :(得分:2)
不确定数据的外观。
但是python有一个很好的做子图的方法:
import matplotlib.pyplot as plt
plt.figure(figsize=(16,8)) ## setting over-all figure size (optional)
plt.subplot(2, 3, 1)
## this creates 6 subplots (2 rows and 3 columns)
## 1 at the end means we are in the first subplot.. then...
plt.plot(x1,y1) ## for well-selected x1 and y1
plt.subplot(232) ## the same as subplot(2, 3, 2) - you can use this when values have
## one digit only; now we are in the 2nd subplot
plt.plot(x2, y2) ## this will be plotted in the second subplot
## etc. ...
plt.subplot(236)
plt.plot(x6,y6)