计算圆中点的位置

时间:2011-03-14 15:45:42

标签: algorithm math trigonometry geometry

此刻我对此有一点空白。 我有一个问题,我需要计算中心点周围点的位置,假设它们距离中心和彼此都是等距的。

点数是可变的,所以它是DrawCirclePoints(int x) 我确信这是一个简单的解决方案,但对于我的生活,我只是看不到它:)

13 个答案:

答案 0 :(得分:77)

如果半径长度 r 且角度 t 以弧度为单位,圆圈的中心(h,k),则可以计算坐标圆周上的一个点如下(这是伪代码,你必须使它适应你的语言):

float x = r*cos(t) + h;
float y = r*sin(t) + k;

答案 1 :(得分:61)

中心为(x0,y0)且半径为r的圆上的角度θ为(x0 + r cos theta, y0 + r sin theta)。现在选择theta值均匀分布在0到2pi之间。

答案 2 :(得分:48)

这是使用C#的解决方案:

void DrawCirclePoints(int points, double radius, Point center)
{
    double slice = 2 * Math.PI / points;
    for (int i = 0; i < points; i++)
    {
        double angle = slice * i;
        int newX = (int)(center.X + radius * Math.Cos(angle));
        int newY = (int)(center.Y + radius * Math.Sin(angle));
        Point p = new Point(newX, newY);
        Console.WriteLine(p);
    }
}

DrawCirclePoints(8, 10, new Point(0,0));的示例输出:

{X=10,Y=0}
{X=7,Y=7}
{X=0,Y=10}
{X=-7,Y=7}
{X=-10,Y=0}
{X=-7,Y=-7}
{X=0,Y=-10}
{X=7,Y=-7}
祝你好运!

答案 3 :(得分:9)

使用上述答案之一作为基础,这里是Java / Android示例:

protected void onDraw(Canvas canvas) {
    super.onDraw(canvas);

    RectF bounds = new RectF(canvas.getClipBounds());
    float centerX = bounds.centerX();
    float centerY = bounds.centerY();

    float angleDeg = 90f;
    float radius = 20f

    float xPos = radius * (float)Math.cos(Math.toRadians(angleDeg)) + centerX;
    float yPos = radius * (float)Math.sin(Math.toRadians(angleDeg)) + centerY;

    //draw my point at xPos/yPos
}

答案 4 :(得分:3)

我必须在网上这样做,所以这里是@ scottyab's上面的coffeescript版本答案:

points = 8
radius = 10
center = {x: 0, y: 0}

drawCirclePoints = (points, radius, center) ->
  slice = 2 * Math.PI / points
  for i in [0...points]
    angle = slice * i
    newX = center.x + radius * Math.cos(angle)
    newY = center.y + radius * Math.sin(angle)
    point = {x: newX, y: newY}
    console.log point

drawCirclePoints(points, radius, center)

答案 5 :(得分:2)

PHP解决方案:

class point{
    private $x = 0;
    private $y = 0;
    public function setX($xpos){
        $this->x = $xpos;
    }
    public function setY($ypos){
        $this->y = $ypos;
    }
    public function getX(){
        return $this->x;
    }
    public function getY(){
        return $this->y;
    }
    public function printX(){
        echo $this->x;
    }
    public function printY(){
        echo $this->y;
    }
}
function drawCirclePoints($points, $radius, &$center){
    $pointarray = array();
    $slice = (2*pi())/$points;
    for($i=0;$i<$points;$i++){
        $angle = $slice*$i;
        $newx = (int)(($center->getX() + $radius) * cos($angle));
        $newy = (int)(($center->getY() + $radius) * sin($angle));
        $point = new point();
        $point->setX($newx);
        $point->setY($newy);
        array_push($pointarray,$point);
    }
    return $pointarray;
}

答案 6 :(得分:2)

为了完成,你所描述的“中心点周围点的位置(假设它们与中心距离都相等)”只不过是“极坐标”。而且您要求Convert between polar and Cartesian coordinates x = r*cos(t)y = r*sin(t),{{1}}。

答案 7 :(得分:1)

Java中的工作解决方案:

import java.awt.event.*;
import java.awt.Robot;

public class CircleMouse {

/* circle stuff */
final static int RADIUS = 100;
final static int XSTART = 500;
final static int YSTART = 500;
final static int DELAYMS = 1;
final static int ROUNDS = 5;

public static void main(String args[]) {

    long startT = System.currentTimeMillis();
    Robot bot = null;

    try {
        bot = new Robot();
    } catch (Exception failed) {
        System.err.println("Failed instantiating Robot: " + failed);
    }
    int mask = InputEvent.BUTTON1_DOWN_MASK;

    int howMany = 360 * ROUNDS;
    while (howMany > 0) {
        int x = getX(howMany);
        int y = getY(howMany);
        bot.mouseMove(x, y);
        bot.delay(DELAYMS);
        System.out.println("x:" + x + " y:" + y);
        howMany--;
    }

    long endT = System.currentTimeMillis();
    System.out.println("Duration: " + (endT - startT));

}

/**
 * 
 * @param angle
 *            in degree
 * @return
 */
private static int getX(int angle) {
    double radians = Math.toRadians(angle);
    Double x = RADIUS * Math.cos(radians) + XSTART;
    int result = x.intValue();

    return result;
}

/**
 * 
 * @param angle
 *            in degree
 * @return
 */
private static int getY(int angle) {
    double radians = Math.toRadians(angle);
    Double y = RADIUS * Math.sin(radians) + YSTART;
    int result = y.intValue();

    return result;
}
}

答案 8 :(得分:1)

以下是基于上述@Pirijan答案的R版本。

points <- 8
radius <- 10
center_x <- 5
center_y <- 5

drawCirclePoints <- function(points, radius, center_x, center_y) {
  slice <- 2 * pi / points
  angle <- slice * seq(0, points, by = 1)

  newX <- center_x + radius * cos(angle)
  newY <- center_y + radius * sin(angle)

  plot(newX, newY)
}

drawCirclePoints(points, radius, center_x, center_y)

答案 9 :(得分:1)

这是我用JavaScript在圆上找到一个点,并计算出圆顶的角度(度)的方法。

  const centreX = 50; // centre x of circle
  const centreY = 50; // centre y of circle
  const r = 20; // radius
  const angleDeg = 45; // degree in angle from top
  const radians = angleDeg * (Math.PI/180);
  const pointY = centreY - (Math.cos(radians) * r); // specific point y on the circle for the angle
  const pointX = centreX + (Math.sin(radians) * r); // specific point x on the circle for the angle

答案 10 :(得分:0)

每个点之间的角度将为2Pi/x,因此您可以说,对于点n= 0 to x-1,定义的0点的角度为2nPi/x

假设您的第一个点位于(r,0)(其中r是距中心点的距离),那么相对于中心点的位置将是:

rCos(2nPi/x),rSin(2nPi/x)

答案 11 :(得分:0)

基于上面Daniel的回答,这是我使用Python3的看法。

import numpy

shape = []
def circlepoints(points,radius,center):
    slice = 2 * 3.14 / points
    for i in range(points):
        angle = slice * i
        new_x = center[0] + radius*numpy.cos(angle)
        new_y = center[1] + radius*numpy.sin(angle)

        p = (new_x,new_y)
        shape.append(p)

    return shape

print(circlepoints(100,20,[0,0]))

答案 12 :(得分:0)

在循环路径中放置数字

// variable
let number = 12; // how many number to be placed
let size = 260; // size of circle i.e. w = h = 260
let cx= size/2; // center of x(in a circle)
let cy = size/2; // center of y(in a circle)
let r = size/2; // radius of a circle

for(let i=1; i<=number; i++) {
  let ang = i*(Math.PI/(number/2));
  let left = cx + (r*Math.cos(ang));
  let top = cy + (r*Math.sin(ang));
  console.log("top: ", top, ", left: ", left);
}