python-使用pandas get_dummies后可以连接列吗?

时间:2018-10-26 05:32:04

标签: python pandas dataframe

这是我的示例df

         doc_num
doc1 doc2 
 A    B    U123
 A    C    U123
 A    D    U124
 B    C    U126
 B    D    U126

我已经使用

pd.get_dummies(df.doc_num).sort_index(level=0)

制作这样的向量矩阵

           U123 U124 U126
doc1 doc2  
 A    B     1    0    0
 A    C     1    0    0
 A    D     0    1    0
 B    C     0    0    1
 B    D     0    0    1

但是我想连接doc1和doc2,然后创建一个新列以查看预期的结果

       U123 U124 U126
doc_3  
 A,B     1    0    0
 A,C     1    0    0
 A,D     0    1    0
 B,C     0    0    1
 B,D     0    0    1

有可能吗?预先谢谢

3 个答案:

答案 0 :(得分:1)

除了@jezrael的答案之外,您还需要向量矩阵,所以:

df1=pd.get_dummies(df.doc_num)
df1.insert(0, 'doc_3',  df['doc1'] + ',' + df['doc2'])
print(df1.set_index('doc_3'))

或者:

df1=pd.get_dummies(df.doc_num)
df1['doc_3']=df.pop('doc1') + ',' + df.pop('doc2')
print(df1.set_index('doc_3'))

所有输出:

       U123  U124  U126
doc_3                  
A,B       1     0     0
A,C       1     0     0
A,D       0     1     0
B,C       0     0     1
B,D       0     0     1

现在您确实获得了所需的输出。

答案 1 :(得分:0)

我认为您需要同时加入MultiIndex的两个级别,并通过rename_axis设置索引名称:

df1 = pd.get_dummies(df.doc_num).sort_index(level=0)
df1.index = df1.index.map(','.join)
df1 = df1.rename_axis('doc_3')
print (df1)
       U123  U124  U126
doc_3                  
A,B       1     0     0
A,C       1     0     0
A,D       0     1     0
B,C       0     0     1
B,D       0     0     1

并在必要时为列添加reset_index

df1 = df1.reset_index()
print (df1)
  doc_3  U123  U124  U126
0   A,B     1     0     0
1   A,C     1     0     0
2   A,D     0     1     0
3   B,C     0     0     1
4   B,D     0     0     1

如果要建立索引,则将reset_index首先从MultiIndexpop的列中,以提取列:

df1 = pd.get_dummies(df.doc_num).sort_index(level=0).reset_index()
df1.index =  df1.pop('doc1') + ',' + df1.pop('doc2')
df1 = df1.rename_axis('doc_3')
print (df1)
       U123  U124  U126
doc_3                  
A,B       1     0     0
A,C       1     0     0
A,D       0     1     0
B,C       0     0     1
B,D       0     0     1

或将insert用于新列:

df1 = pd.get_dummies(df.doc_num).sort_index(level=0).reset_index()
df1.insert(0, 'doc_3',  df1.pop('doc1') + ',' + df1.pop('doc2'))

print (df1)
  doc_3  U123  U124  U126
0   A,B     1     0     0
1   A,C     1     0     0
2   A,D     0     1     0
3   B,C     0     0     1
4   B,D     0     0     1

答案 2 :(得分:0)

您可以尝试以下代码。它将两列合并为一个。另外,在它们之间添加“,”。

df['doc_3'] = df['doc1'] + "," + df['doc2']

然后您可以删除前两列