我目前正在研究对象检测网络的输入管道,并且正在为标签批量处理而苦苦挣扎。标签由边界框坐标和图像中的对象类别组成。由于图像中可能有多个对象,因此标签尺寸是任意的
使用tf.train.batch
时,可以设置dynamic_padding=True
以使形状适合相同的尺寸。但是data.TFRecordDataset.batch()
中没有这样的选项。
我想批处理的所需形状对于我的Box是[batch_size, arbitrary , 4]
,对于班级是[batch_size, arbitrary, 1]
。
def decode(serialized_example):
"""
Decodes the information of the TFRecords to image, label_coord, label_classes
Later on will also contain the Image Sequence!
:param serialized_example: Serialized Example read from the TFRecords
:return: image, label_coordinates list, label_classes list
"""
features = {'image/shape': tf.FixedLenFeature([], tf.string),
'train/image': tf.FixedLenFeature([], tf.string),
'label/coordinates': tf.VarLenFeature(tf.float32),
'label/classes': tf.VarLenFeature(tf.string)}
features = tf.parse_single_example(serialized_example, features=features)
image_shape = tf.decode_raw(features['image/shape'], tf.int64)
image = tf.decode_raw(features['train/image'], tf.float32)
image = tf.reshape(image, image_shape)
# Contains the Bounding Box coordinates in a flattened tensor
label_coord = features['label/coordinates']
label_coord = label_coord.values
label_coord = tf.reshape(label_coord, [1, -1, 4])
# Contains the Classes of the BBox in a flattened Tensor
label_classes = features['label/classes']
label_classes = label_classes.values
label_classes = tf.reshape(label_classes, [1, -1, 1])
return image, label_coord, label_classes
dataset = tf.data.TFRecordDataset(filename)
dataset = dataset.map(decode)
dataset = dataset.map(augment)
dataset = dataset.map(normalize)
dataset = dataset.repeat(num_epochs)
dataset = dataset.batch(batch_size)
dataset = dataset.batch(batch_size)
引发的错误是Cannot batch tensors with different shapes in component 1. First element had shape [1,1,4] and element 1 had shape [1,7,4].
目前augment
和normalize
函数只是占位符。
答案 0 :(得分:0)
事实证明,tf.data.TFRecordDataset
还有另一个称为padded_batch
的功能,它基本上是在完成tf.train.batch(dynamic_pad=True)
的工作。这样可以很容易地解决问题...
dataset = tf.data.TFRecordDataset(filename)
dataset = dataset.map(decode)
dataset = dataset.map(augment)
dataset = dataset.map(normalize)
dataset = dataset.shuffle(1000+3*batch_size)
dataset = dataset.repeat(num_epochs)
dataset = dataset.padded_batch(batch_size,
drop_remainder=False,
padded_shapes=([None, None, None],
[None, 4],
[None, 1])
)