我想使用Tensorflow的数据集API来读取变量长度列表的TFRecords文件。这是我的代码。
def _int64_feature(value):
# value must be a numpy array.
return tf.train.Feature(int64_list=tf.train.Int64List(value=value))
def main1():
# Write an array to TFrecord.
# a is an array which contains lists of variant length.
a = np.array([[0, 54, 91, 153, 177],
[0, 50, 89, 147, 196],
[0, 38, 79, 157],
[0, 49, 89, 147, 177],
[0, 32, 73, 145]])
writer = tf.python_io.TFRecordWriter('file')
for i in range(a.shape[0]): # i = 0 ~ 4
x_train = a[i]
feature = {'i': _int64_feature(np.array([i])), 'data': _int64_feature(x_train)}
# Create an example protocol buffer
example = tf.train.Example(features=tf.train.Features(feature=feature))
# Serialize to string and write on the file
writer.write(example.SerializeToString())
writer.close()
# Check TFRocord file.
record_iterator = tf.python_io.tf_record_iterator(path='file')
for string_record in record_iterator:
example = tf.train.Example()
example.ParseFromString(string_record)
i = (example.features.feature['i'].int64_list.value)
data = (example.features.feature['data'].int64_list.value)
#data = np.fromstring(data_string, dtype=np.int64)
print(i, data)
# Use Dataset API to read the TFRecord file.
def _parse_function(example_proto):
keys_to_features = {'i' :tf.FixedLenFeature([], tf.int64),
'data':tf.FixedLenFeature([], tf.int64)}
parsed_features = tf.parse_single_example(example_proto, keys_to_features)
return parsed_features['i'], parsed_features['data']
ds = tf.data.TFRecordDataset('file')
iterator = ds.map(_parse_function).make_one_shot_iterator()
i, data = iterator.get_next()
with tf.Session() as sess:
print(i.eval())
print(data.eval())
检查TFRecord文件
[0] [0, 54, 91, 153, 177]
[1] [0, 50, 89, 147, 196]
[2] [0, 38, 79, 157]
[3] [0, 49, 89, 147, 177]
[4] [0, 32, 73, 145]
但是当我尝试使用Dataset API读取TFRecord文件时,它显示以下错误。
tensorflow.python.framework.errors_impl.InvalidArgumentError:名称: ,键:数据,索引:0。int64值的数量!=预期。 值大小:5但输出形状:[]
谢谢。
的更新:
我尝试使用以下代码来读取数据集API的TFRecord,但它们都失败了。
def _parse_function(example_proto):
keys_to_features = {'i' :tf.FixedLenFeature([], tf.int64),
'data':tf.VarLenFeature(tf.int64)}
parsed_features = tf.parse_single_example(example_proto, keys_to_features)
return parsed_features['i'], parsed_features['data']
ds = tf.data.TFRecordDataset('file')
iterator = ds.map(_parse_function).make_one_shot_iterator()
i, data = iterator.get_next()
with tf.Session() as sess:
print(sess.run([i, data]))
或
def _parse_function(example_proto):
keys_to_features = {'i' :tf.VarLenFeature(tf.int64),
'data':tf.VarLenFeature(tf.int64)}
parsed_features = tf.parse_single_example(example_proto, keys_to_features)
return parsed_features['i'], parsed_features['data']
ds = tf.data.TFRecordDataset('file')
iterator = ds.map(_parse_function).make_one_shot_iterator()
i, data = iterator.get_next()
with tf.Session() as sess:
print(sess.run([i, data]))
错误:
回溯(最近一次调用最后一次):文件" /usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/tensor_util.py", 第468行,在make_tensor_proto中 str_values = [protat_values中x的compat.as_bytes(x)]文件" /usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/tensor_util.py", 第468行 str_values = [protat_values中x的compat.as_bytes(x)]文件" /usr/local/lib/python3.5/dist-packages/tensorflow/python/util/compat.py", 第65行,as_bytes (bytes_or_text,))TypeError:预期的二进制或unicode字符串,得到
在处理上述异常期间,发生了另一个异常:
回溯(最近一次呼叫最后):文件" 2tfrecord.py",第126行,在 main1()文件" 2tfrecord.py",第72行,在main1中 iterator = ds.map(_parse_function).make_one_shot_iterator()File" /usr/local/lib/python3.5/dist-packages/tensorflow/python/data/ops/dataset_ops.py", 第712行,在地图中 返回MapDataset(self,map_func)File" /usr/local/lib/python3.5/dist-packages/tensorflow/python/data/ops/dataset_ops.py", 第1385行, init self._map_func.add_to_graph(ops.get_default_graph())File" /usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/function.py", 第486行,在add_to_graph中 self._create_definition_if_needed()File" /usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/function.py", 第321行,在_create_definition_if_needed中 self._create_definition_if_needed_impl()File" /usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/function.py", 第338行,在_create_definition_if_needed_impl中 outputs = self._func(* inputs)File" /usr/local/lib/python3.5/dist-packages/tensorflow/python/data/ops/dataset_ops.py", 第1376行,在tf_map_func中 flattened_ret = [ops.convert_to_tensor(t)for nest.flatten(ret)]文件 " /usr/local/lib/python3.5/dist-packages/tensorflow/python/data/ops/dataset_ops.py" ;, 第1376行,in flattened_ret = [ops.convert_to_tensor(t)for nest.flatten(ret)]文件 " /usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/ops.py" ;, 第836行,在convert_to_tensor中 as_ref = False)File" /usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/ops.py", 第926行,在internal_convert_to_tensor中 ret = conversion_func(value,dtype = dtype,name = name,as_ref = as_ref)文件 " /usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/constant_op.py" ;, 第229行,在_constant_tensor_conversion_function中 return constant(v,dtype = dtype,name = name)File" /usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/constant_op.py", 208行,常数 value,dtype = dtype,shape = shape,verify_shape = verify_shape))文件 " /usr/local/lib/python3.5/dist-packages/tensorflow/python/framework/tensor_util.py" ;, 第472行,在make_tensor_proto中 "支持的类型。" %(类型(值),值))TypeError:无法将类型的对象转换为Tensor。 内容: SparseTensor(指数=张量(" ParseSingleExample / Slice_Indices_i:0&#34 ;, shape =(?,1),dtype = int64), 值=张量(" ParseSingleExample / ParseExample / ParseExample:3&#34 ;, shape =(?,),dtype = int64), dense_shape = Tensor(" ParseSingleExample / Squeeze_Shape_i:0",shape =(1,), D型= int64类型))。考虑将元素转换为支持的类型。
Python版本:3.5.2
Tensorflow版本:1.4.1
答案 0 :(得分:11)
经过几个小时的搜索和尝试,我相信答案会出现。以下是我的代码。
def _int64_feature(value):
# value must be a numpy array.
return tf.train.Feature(int64_list=tf.train.Int64List(value=value.flatten()))
# Write an array to TFrecord.
# a is an array which contains lists of variant length.
a = np.array([[0, 54, 91, 153, 177],
[0, 50, 89, 147, 196],
[0, 38, 79, 157],
[0, 49, 89, 147, 177],
[0, 32, 73, 145]])
writer = tf.python_io.TFRecordWriter('file')
for i in range(a.shape[0]): # i = 0 ~ 4
x_train = np.array(a[i])
feature = {'i' : _int64_feature(np.array([i])),
'data': _int64_feature(x_train)}
# Create an example protocol buffer
example = tf.train.Example(features=tf.train.Features(feature=feature))
# Serialize to string and write on the file
writer.write(example.SerializeToString())
writer.close()
# Check TFRocord file.
record_iterator = tf.python_io.tf_record_iterator(path='file')
for string_record in record_iterator:
example = tf.train.Example()
example.ParseFromString(string_record)
i = (example.features.feature['i'].int64_list.value)
data = (example.features.feature['data'].int64_list.value)
print(i, data)
# Use Dataset API to read the TFRecord file.
filenames = ["file"]
dataset = tf.data.TFRecordDataset(filenames)
def _parse_function(example_proto):
keys_to_features = {'i':tf.VarLenFeature(tf.int64),
'data':tf.VarLenFeature(tf.int64)}
parsed_features = tf.parse_single_example(example_proto, keys_to_features)
return tf.sparse_tensor_to_dense(parsed_features['i']), \
tf.sparse_tensor_to_dense(parsed_features['data'])
# Parse the record into tensors.
dataset = dataset.map(_parse_function)
# Shuffle the dataset
dataset = dataset.shuffle(buffer_size=1)
# Repeat the input indefinitly
dataset = dataset.repeat()
# Generate batches
dataset = dataset.batch(1)
# Create a one-shot iterator
iterator = dataset.make_one_shot_iterator()
i, data = iterator.get_next()
with tf.Session() as sess:
print(sess.run([i, data]))
print(sess.run([i, data]))
print(sess.run([i, data]))
有几点需要注意
这个SO问题有很多帮助
2. tf.VarLenFeature
将返回SparseTensor,因此,使用tf.sparse_tensor_to_dense
转换为密集张量是必要的。
3.在我的代码中,parse_single_example()
无法替换为parse_example()
,并且会让我感到困扰一天。我不知道为什么parse_example()
没有成功。如果有人知道原因,请赐教。
答案 1 :(得分:2)
错误很简单。您的data
不是FixedLenFeature
VarLenFeature
。替换你的行:
'data':tf.FixedLenFeature([], tf.int64)}
与
'data':tf.VarLenFeature(tf.int64)}
此外,当您调用print(i.eval())
和print(data.eval())
时,您正在调用迭代器两次。第一个print
将打印0
,但第二个将打印第二行[ 0, 50, 89, 147, 196]
的值。您可以print(sess.run([i, data]))
从同一行获取i
和data
。