我试图证明列表元素上的传递关系等同于列表上的传递关系(在某些情况下)。
这是第一个引理:
lemma list_all2_rtrancl1:
"(list_all2 P)⇧*⇧* xs ys ⟹
list_all2 P⇧*⇧* xs ys"
apply (induct rule: rtranclp_induct)
apply (simp add: list.rel_refl)
by (smt list_all2_trans rtranclp.rtrancl_into_rtrancl)
这是一个对称引理:
lemma list_all2_rtrancl2:
"(⋀x. P x x) ⟹
list_all2 P⇧*⇧* xs ys ⟹
(list_all2 P)⇧*⇧* xs ys"
apply (erule list_all2_induct)
apply simp
我想一个关系应该是自反的。但是也许我应该使用另一个假设。假设P是可传递的,但是P不是可传递的,则可以证明引理。我被卡住了。您能否建议选择哪些假设以及如何证明这一引理?
似乎nitpick给了我关于最后一个引理(xs = [0]
和ys = [2]
)的特定情况的错误反例:
lemma list_all2_rtrancl2_example:
"list_all2 (λx y. x = y ∨ Suc x = y)⇧*⇧* xs ys ⟹
(list_all2 (λx y. x = y ∨ Suc x = y))⇧*⇧* xs ys"
nitpick
我可以证明该示例成立了引理:
lemma list_all2_rtrancl2_example_0_2:
"list_all2 (λx y. x = y ∨ Suc x = y)⇧*⇧* [0] [2] ⟹
(list_all2 (λx y. x = y ∨ Suc x = y))⇧*⇧* [0] [2]"
apply (rule_tac ?b="[1]" in converse_rtranclp_into_rtranclp; simp)
apply (rule_tac ?b="[2]" in converse_rtranclp_into_rtranclp; simp)
done
答案 0 :(得分:1)
使用listrel
代替list_all2
是可行的。实际上,如下所示,它们是等效的(请参见set_listrel_eq_list_all2
)。但是,标准库中关于listrel
的几个定理没有与list_all2
等效的定理。
theory so_htlatrfetl_2
imports Complex_Main
begin
lemma set_listrel_eq_list_all2:
"listrel {(x, y). r x y} = {(xs, ys). list_all2 r xs ys}"
using list_all2_conv_all_nth listrel_iff_nth by fastforce
lemma listrel_tclosure_1: "(listrel r)⇧* ⊆ listrel (r⇧*)"
by (simp add: listrel_rtrancl_eq_rtrancl_listrel1
listrel_subset_rtrancl_listrel1 rtrancl_subset_rtrancl)
lemma listrel_tclosure_2: "refl r ⟹ listrel (r⇧*) ⊆ (listrel r)⇧*"
by (simp add: listrel1_subset_listrel listrel_rtrancl_eq_rtrancl_listrel1
rtrancl_mono)
context includes lifting_syntax
begin
lemma listrel_list_all2_transfer [transfer_rule]:
"((=) ===> (=) ===> (=) ===> (=))
(λr xs ys. (xs, ys) ∈ listrel {(x, y). r x y}) list_all2"
unfolding rel_fun_def using set_listrel_eq_list_all2 listrel_iff_nth by blast
end
lemma list_all2_rtrancl_1:
"(list_all2 r)⇧*⇧* xs ys ⟹ list_all2 r⇧*⇧* xs ys"
proof(transfer)
fix r :: "'a ⇒ 'a ⇒ bool"
fix xs :: "'a list"
fix ys:: "'a list"
assume "(λxs ys. (xs, ys) ∈ listrel {(x, y). r x y})⇧*⇧* xs ys"
then have "(xs, ys) ∈ (listrel {(x, y). r x y})⇧*"
unfolding rtranclp_def rtrancl_def by auto
then have "(xs, ys) ∈ listrel ({(x, y). r x y}⇧*)"
using listrel_tclosure_1 by auto
then show "(xs, ys) ∈ listrel {(x, y). r⇧*⇧* x y}"
unfolding rtranclp_def rtrancl_def by auto
qed
lemma list_all2_rtrancl_2:
"reflp r ⟹ list_all2 r⇧*⇧* xs ys ⟹ (list_all2 r)⇧*⇧* xs ys"
proof(transfer)
fix r :: "'a ⇒ 'a ⇒ bool"
fix xs :: "'a list"
fix ys :: "'a list"
assume as_reflp: "reflp r"
assume p_in_lr: "(xs, ys) ∈ listrel {(x, y). r⇧*⇧* x y}"
from as_reflp have refl: "refl {(x, y). r x y}"
using reflp_refl_eq by fastforce
from p_in_lr have "(xs, ys) ∈ listrel ({(x, y). r x y}⇧*)"
unfolding rtranclp_def rtrancl_def by auto
with refl have "(xs, ys) ∈ (listrel {(x, y). r x y})⇧*"
using listrel_tclosure_2 by auto
then show "(λxs ys. (xs, ys) ∈ listrel {(x, y). r x y})⇧*⇧* xs ys"
unfolding rtranclp_def rtrancl_def by auto
qed
end
还提供了list_all2
的直接证明(传统):
list_all2_induct
应用于列表;基本情况是微不足道的。因此,如果(L P)* x#xs y#ys
,(L (P*)) xs ys
和(L P)* xs ys
为P* x y
,则仍然显示为zs
。xs
和(L P) xs zs
这样的(L P)+ zs ys
(例如P* x y
)。P x x
,P*
的传递特性,通过归纳法(L P) x#xs y#zs
和(L P)* x#xs y#zs
。因此,(L P)+ zs ys
也是如此。P y y
和(L P)+ y#zs y#ys
,归纳为(L P)* y#zs y#ys
。因此,(L P)* x#xs y#ys
也是如此。theory so_htlatrfetl
imports Complex_Main
begin
lemma list_all2_rtrancl2:
assumes as_r: "(⋀x. P x x)"
shows "(list_all2 P⇧*⇧*) xs ys ⟹ (list_all2 P)⇧*⇧* xs ys"
proof(induction rule: list_all2_induct)
case Nil then show ?case by simp
next
case (Cons x xs y ys) show ?case
proof -
from as_r have lp_xs_xs: "list_all2 P xs xs" by (rule list_all2_refl)
from Cons.hyps(1) have x_xs_y_zs: "(list_all2 P)⇧*⇧* (x#xs) (y#xs)"
proof(induction rule: rtranclp_induct)
case base then show ?case by simp
next
case (step y z) then show ?case
proof -
have rt_step_2: "(list_all2 P)⇧*⇧* (y#xs) (z#xs)"
by (rule r_into_rtranclp, rule list_all2_Cons[THEN iffD2])
(simp add: step.hyps(2) lp_xs_xs)
from step.IH rt_step_2 show ?thesis by (rule rtranclp_trans)
qed
qed
from Cons.IH have "(list_all2 P)⇧*⇧* (y#xs) (y#ys)"
proof(induction rule: rtranclp_induct)
case base then show ?case by simp
next
case (step ya za) show ?case
proof -
have rt_step_2: "(list_all2 P)⇧*⇧* (y#ya) (y#za)"
by (rule r_into_rtranclp, rule list_all2_Cons[THEN iffD2])
(simp add: step.hyps(2) as_r)
from step.IH rt_step_2 show ?thesis by (rule rtranclp_trans)
qed
qed
with x_xs_y_zs show ?thesis by simp
qed
qed
end
。nitpick
作为一个旁注,我认为(我对nitpick知之甚少),nitpick不应在没有任何警告的情况下提供无效的反例。我相信,通常,当0.9.7i
“怀疑”反例可能无效时,它会通知用户该例“可能是虚假的”。如果尚未在其他地方记录此问题,则提交错误报告可能会很有用。