我正在手动创建功能和numpy数组的字典。
import tensorflow as tf
def suppress_range(x, a, b):
"""Sets all the elements in the range [a, b) to 0"""
assert (a < b), "a must be less than b"
significant = tf.logical_or(x <= a, x > b)
zero = tf.zeros_like(x)
return tf.where(significant, x, zero)
def main():
logits = tf.placeholder(tf.float32)
output = tf.sign(suppress_range(logits, -0.5, 0.5))
with tf.Session() as sess:
x = [[0.6, 0.4, -0.6, -0.4], [0.5, 0.1, -0.7, -0.2]]
print(sess.run(output, feed_dict={logits: x}))
if __name__ == '__main__':
main()
columns = ['a', 'b', 'c', 'd']
features = {'a': df_train.values[:, 0],
'b': df_train.values[:, 1],
'c': df_train.values[:, 2],
'd': df_train.values[:, 3]}
是源自df_train
我正在使用以下代码对其进行简化:
pandas.read_csv()
还有更多Python方式吗? (例如,带zip的字典?)
答案 0 :(得分:2)
您可以使用移调:
dict(zip(columns, df_train.values.T))
或
{k: v for k, v in zip(columns, df_train.values.T)}