我正在尝试使用方程式进行非线性回归
y=ae^(-bT)
其中T是临时数据:
([26.67, 93.33, 148.89, 222.01, 315.56])
并且y是具有数据的粘度:
([1.35, .085, .012, .0049, .00075])
目标是确定a
和b
的值,而无需线性化方程式来绘制图表。到目前为止,我尝试过的一种方法是:
import matplotlib
matplotlib.use('Qt4Agg')
import matplotlib.pyplot as plt
import numpy as np
from scipy.optimize import curve_fit
def func(x, a, b):
return a*(np.exp(-b * x))
#data
temp = np.array([26.67, 93.33, 148.89, 222.01, 315.56])
Viscosity = np.array([1.35, .085, .012, .0049, .00075])
initialGuess=[200,1]
guessedFactors=[func(x,*initialGuess ) for x in temp]
#curve fit
popt,pcov = curve_fit(func, temp, Viscosity,initialGuess)
print (popt)
print (pcov)
tempCont=np.linspace(min(temp),max(temp),50)
fittedData=[func(x, *popt) for x in tempCont]
fig1 = plt.figure(1)
ax=fig1.add_subplot(1,1,1)
###the three sets of data to plot
ax.plot(temp,Viscosity,linestyle='',marker='o', color='r',label="data")
ax.plot(temp,guessedFactors,linestyle='',marker='^', color='b',label="initial guess")
###beautification
ax.legend(loc=0, title="graphs", fontsize=12)
ax.set_ylabel("Viscosity")
ax.set_xlabel("temp")
ax.grid()
ax.set_title("$\mathrm{curve}_\mathrm{fit}$")
###putting the covariance matrix nicely
tab= [['{:.2g}'.format(j) for j in i] for i in pcov]
the_table = plt.table(cellText=tab,
colWidths = [0.2]*3,
loc='upper right', bbox=[0.483, 0.35, 0.5, 0.25] )
plt.text(250,65,'covariance:',size=12)
###putting the plot
plt.show()
我很确定,香港专业教育学院使它变得过于复杂和混乱。
答案 0 :(得分:1)
以下是使用您的数据和方程式的示例代码,以及scipy的differential_evolution遗传算法用于确定非线性钳工的初始参数估计。差分进化的科学实现使用拉丁Hypercube算法来确保对参数空间的彻底搜索,在这里,我给出了我认为适合的参数应存在的范围。
import numpy, scipy, matplotlib
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
from scipy.optimize import differential_evolution
import warnings
xData = numpy.array([26.67, 93.33, 148.89, 222.01, 315.56])
yData = numpy.array([1.35, .085, .012, .0049, .00075])
def func(T, a, b):
return a * numpy.exp(-b*T)
# function for genetic algorithm to minimize (sum of squared error)
def sumOfSquaredError(parameterTuple):
warnings.filterwarnings("ignore") # do not print warnings by genetic algorithm
val = func(xData, *parameterTuple)
return numpy.sum((yData - val) ** 2.0)
def generate_Initial_Parameters():
parameterBounds = []
parameterBounds.append([0.0, 10.0]) # search bounds for a
parameterBounds.append([-1.0, 1.0]) # search bounds for b
# "seed" the numpy random number generator for repeatable results
result = differential_evolution(sumOfSquaredError, parameterBounds, seed=3)
return result.x
# by default, differential_evolution completes by calling curve_fit() using parameter bounds
geneticParameters = generate_Initial_Parameters()
# now call curve_fit without passing bounds from the genetic algorithm,
# just in case the best fit parameters are aoutside those bounds
fittedParameters, pcov = curve_fit(func, xData, yData, geneticParameters)
print('Fitted parameters:', fittedParameters)
print()
modelPredictions = func(xData, *fittedParameters)
absError = modelPredictions - yData
SE = numpy.square(absError) # squared errors
MSE = numpy.mean(SE) # mean squared errors
RMSE = numpy.sqrt(MSE) # Root Mean Squared Error, RMSE
Rsquared = 1.0 - (numpy.var(absError) / numpy.var(yData))
print()
print('RMSE:', RMSE)
print('R-squared:', Rsquared)
print()
##########################################################
# graphics output section
def ModelAndScatterPlot(graphWidth, graphHeight):
f = plt.figure(figsize=(graphWidth/100.0, graphHeight/100.0), dpi=100)
axes = f.add_subplot(111)
# first the raw data as a scatter plot
axes.plot(xData, yData, 'D')
# create data for the fitted equation plot
xModel = numpy.linspace(min(xData), max(xData))
yModel = func(xModel, *fittedParameters)
# now the model as a line plot
axes.plot(xModel, yModel)
axes.set_xlabel('temp') # X axis data label
axes.set_ylabel('viscosity') # Y axis data label
plt.show()
plt.close('all') # clean up after using pyplot
graphWidth = 800
graphHeight = 600
ModelAndScatterPlot(graphWidth, graphHeight)