我正在尝试使用大阵列进行点积运算
L_mat=csr_matrix(L_mat)
# L_mat is (24, 1226880)
L_mat_t=csr_matrix(L_mat_t)
# L_mat_t is (1226880, 24)
# Following is possible?
LT_dot_L=L_mat_t.dot(L_mat)
# I'm expecting (1226880, 1226880) but when I did this,
# I got MemoryError
当我执行较小的数组时,我遇到了相同的MemoryError
(523776, 24) dot (24, 523776)
可以执行
(24, 523776) dot (523776, 24) = (24, 24)
如何使用csr_matrix或其他方式执行大型阵列点积?
答案 0 :(得分:0)
我不会尝试发生内存错误,但考虑进行此测试
In [300]: from scipy import sparse
In [301]: M = sparse.random(10,10000, format='csr')
In [302]: M
Out[302]:
<10x10000 sparse matrix of type '<class 'numpy.float64'>'
with 1000 stored elements in Compressed Sparse Row format>
In [303]: M.dot(M.T)
Out[303]:
<10x10 sparse matrix of type '<class 'numpy.float64'>'
with 66 stored elements in Compressed Sparse Row format>
In [304]: M.T.dot(M)
Out[304]:
<10000x10000 sparse matrix of type '<class 'numpy.float64'>'
with 100310 stored elements in Compressed Sparse Column format>
M
的稀疏度为0.01,Out[304]
的稀疏度为.001,但非零值仍然多100倍。有了一个(1226880,1226880)矩阵,我可以轻松想象出即使内存稀疏也无法容纳内存的情况。