相似的问题(但答案对我不起作用):How to cancel long-running subprocesses running using concurrent.futures.ProcessPoolExecutor?
与上面链接的问题和提供的解决方案不同,在我的情况下,计算本身相当长(CPU限制),并且无法循环运行以检查是否发生了某些事件。
以下代码的简化版本:
import asyncio
import concurrent.futures as futures
import time
class Simulator:
def __init__(self):
self._loop = None
self._lmz_executor = None
self._tasks = []
self._max_execution_time = time.monotonic() + 60
self._long_running_tasks = []
def initialise(self):
# Initialise the main asyncio loop
self._loop = asyncio.get_event_loop()
self._loop.set_default_executor(
futures.ThreadPoolExecutor(max_workers=3))
# Run separate processes of long computation task
self._lmz_executor = futures.ProcessPoolExecutor(max_workers=3)
def run(self):
self._tasks.extend(
[self.bot_reasoning_loop(bot_id) for bot_id in [1, 2, 3]]
)
try:
# Gather bot reasoner tasks
_reasoner_tasks = asyncio.gather(*self._tasks)
# Send the reasoner tasks to main monitor task
asyncio.gather(self.sample_main_loop(_reasoner_tasks))
self._loop.run_forever()
except KeyboardInterrupt:
pass
finally:
self._loop.close()
async def sample_main_loop(self, reasoner_tasks):
"""This is the main monitor task"""
await asyncio.wait_for(reasoner_tasks, None)
for task in self._long_running_tasks:
try:
await asyncio.wait_for(task, 10)
except asyncio.TimeoutError:
print("Oops. Some long operation timed out.")
task.cancel() # Doesn't cancel and has no effect
task.set_result(None) # Doesn't seem to have an effect
self._lmz_executor.shutdown()
self._loop.stop()
print('And now I am done. Yay!')
async def bot_reasoning_loop(self, bot):
import math
_exec_count = 0
_sleepy_time = 15
_max_runs = math.floor(self._max_execution_time / _sleepy_time)
self._long_running_tasks.append(
self._loop.run_in_executor(
self._lmz_executor, really_long_process, _sleepy_time))
while time.monotonic() < self._max_execution_time:
print("Bot#{}: thinking for {}s. Run {}/{}".format(
bot, _sleepy_time, _exec_count, _max_runs))
await asyncio.sleep(_sleepy_time)
_exec_count += 1
print("Bot#{} Finished Thinking".format(bot))
def really_long_process(sleepy_time):
print("I am a really long computation.....")
_large_val = 9729379273492397293479237492734 ** 344323
print("I finally computed this large value: {}".format(_large_val))
if __name__ == "__main__":
sim = Simulator()
sim.initialise()
sim.run()
这个想法是,有一个主要的仿真循环运行并监视三个bot线程。然后,这些机器人线程中的每个线程都会执行一些推理,但也会使用ProcessPoolExecutor
启动一个非常长的后台进程,这可能最终导致他们自己的阈值/最大执行时间更长,从而无法对事物进行推理。
如您在上面的代码中看到的,我尝试在发生超时时.cancel()
执行这些任务。尽管这并没有真正取消实际的计算,但这种计算一直在后台发生,并且asyncio
循环直到所有长时间运行的计算完成后才终止。
如何在方法中终止长时间运行的CPU绑定计算?
其他类似的SO问题,但不一定相关或有帮助:
答案 0 :(得分:4)
如何在方法中终止长时间运行的CPU绑定计算?
您尝试的方法无效,因为ProcessPoolExecutor
返回的期货无法取消。尽管asyncio的run_in_executor
tries会传播取消信息,但是一旦任务开始执行,它就Future.cancel
就是ignored。
没有根本原因。与线程不同,可以安全地终止进程,因此ProcessPoolExecutor.submit
很有可能返回未来,其cancel
终止了相应的进程。 Asyncio协程已经定义了取消语义,并将自动使用它。不幸的是,ProcessPoolExecutor.submit
返回一个常规的concurrent.futures.Future
,该假设假定公分母最低,并且将运行中的未来视为不可触及。
因此,要取消子流程中执行的任务,必须完全避开ProcessPoolExecutor
并管理自己的流程。面临的挑战是如何在不重新实现multiprocessing
一半的情况下做到这一点。标准库提供的一个选项是为此目的(滥用)multiprocessing.Pool
,因为它支持可靠地关闭工作进程。 CancellablePool
可以按以下方式工作:
ProcessPoolExecutor
中的取消功能,则应避免这种情况。)以下是该想法的示例实现:
import asyncio
import multiprocessing
class CancellablePool:
def __init__(self, max_workers=3):
self._free = {self._new_pool() for _ in range(max_workers)}
self._working = set()
self._change = asyncio.Event()
def _new_pool(self):
return multiprocessing.Pool(1)
async def apply(self, fn, *args):
"""
Like multiprocessing.Pool.apply_async, but:
* is an asyncio coroutine
* terminates the process if cancelled
"""
while not self._free:
await self._change.wait()
self._change.clear()
pool = usable_pool = self._free.pop()
self._working.add(pool)
loop = asyncio.get_event_loop()
fut = loop.create_future()
def _on_done(obj):
loop.call_soon_threadsafe(fut.set_result, obj)
def _on_err(err):
loop.call_soon_threadsafe(fut.set_exception, err)
pool.apply_async(fn, args, callback=_on_done, error_callback=_on_err)
try:
return await fut
except asyncio.CancelledError:
pool.terminate()
usable_pool = self._new_pool()
finally:
self._working.remove(pool)
self._free.add(usable_pool)
self._change.set()
def shutdown(self):
for p in self._working | self._free:
p.terminate()
self._free.clear()
显示取消的简约测试用例:
def really_long_process():
print("I am a really long computation.....")
large_val = 9729379273492397293479237492734 ** 344323
print("I finally computed this large value: {}".format(large_val))
async def main():
loop = asyncio.get_event_loop()
pool = CancellablePool()
tasks = [loop.create_task(pool.apply(really_long_process))
for _ in range(5)]
for t in tasks:
try:
await asyncio.wait_for(t, 1)
except asyncio.TimeoutError:
print('task timed out and cancelled')
pool.shutdown()
asyncio.get_event_loop().run_until_complete(main())
请注意CPU使用率如何不超过3个内核,以及它如何在测试即将结束时开始下降,表明进程已按预期终止。
要将其应用于问题代码,请将self._lmz_executor
设为CancellablePool
的实例,然后将self._loop.run_in_executor(...)
更改为self._loop.create_task(self._lmz_executor.apply(...))
。