我在R中有两个数据框:
city price bedroom
San Jose 2000 1
Barstow 1000 1
NA 1500 1
要重新创建的代码:
data = data.frame(city = c('San Jose', 'Barstow'), price = c(2000,1000, 1500), bedroom = c(1,1,1))
和:
Name Density
San Jose 5358
Barstow 547
要重新创建的代码:
population_density = data.frame(Name=c('San Jose', 'Barstow'), Density=c(5358, 547));
我想根据条件在city_type
数据集中创建一个名为data
的附加列,因此,如果城市人口密度高于1000,则为城市,低于1000的为郊区,并且NA是NA。
city price bedroom city_type
San Jose 2000 1 Urban
Barstow 1000 1 Suburb
NA 1500 1 NA
我正在使用for循环进行条件流:
for (row in 1:length(data)) {
if (is.na(data[row,'city'])) {
data[row, 'city_type'] = NA
} else if (population[population$Name == data[row,'city'],]$Density>=1000) {
data[row, 'city_type'] = 'Urban'
} else {
data[row, 'city_type'] = 'Suburb'
}
}
for循环在原始数据集中运行时没有错误,观察到20000多个;但是,它会产生很多错误的结果(大部分情况下会产生NA)。
这里出了什么问题?如何才能更好地达到预期的效果?
答案 0 :(得分:4)
对于这种类型的加入/过滤/变异工作流程,我非常喜欢print(map(lambda x: x * 10, [5,12,31,7,25]))
管道。所以这是我的建议:
dplyr
输出:
library(dplyr)
# I had to add that extra "NA" there, did you not? Hm...
data <- data.frame(city = c('San Jose', 'Barstow', NA), price = c(2000,1000, 500), bedroom = c(1,1,1))
population <- data.frame(Name=c('San Jose', 'Barstow'), Density=c(5358, 547));
data %>%
# join the two dataframes by matching up the city name columns
left_join(population, by = c("city" = "Name")) %>%
# add your new column based on the desired condition
mutate(
city_type = ifelse(Density >= 1000, "Urban", "Suburb")
)
答案 1 :(得分:2)
使用ifelse
在city_type
中创建population_density
,然后我们使用match
population_density$city_type=ifelse(population_density$Density>1000,'Urban','Suburb')
data$city_type=population_density$city_type[match(data$city,population_density$Name)]
data
city price bedroom city_type
1 San Jose 2000 1 Urban
2 Barstow 1000 1 Suburb
3 <NA> 1500 1 <NA>