我有多列数据框,其中包含列 [“国家”,“能源供应”,“人均能源供应”,“可再生百分比”] 。
在能源供应列中,我想将列的单位从Giga转换为Peta。但是在过程中
energy['Energy Supply']*= energy['Energy Supply']
的值类似于“ ....”(缺失值由此表示)时,也会相乘或重复。同样,该列中的字符串值也将相乘。 (例如,对于原始文件:Peta,操作后:PetaPetaPetaPeta ...)。
为阻止这种情况的发生,我正在运行此程序:
energy = pd.read_excel("Energy Indicators.xls",skiprows = 16, skip_footer = 38)
energy.drop(['Unnamed: 0','Unnamed: 1'],axis = 1, inplace = True)
energy.columns = ['Country', 'Energy Supply', 'Energy Supply per Capita', '% Renewable']
for i in energy['Energy Supply']:
if (isinstance(energy[i],int) == True):
energy['Energy Supply'][i]=energy['Energy Supply'][i]*1000000
return (energy)
但是我没有得到结果,即仅更改整数类型变量的值,并且没有任何变化。
我认为问题出在哪里,前两行将给出 false 条件,因为前几行是“字符串”,并且在此基础上,程序未修改值,而我希望分别检查该值是否为整数类型,如果是,则将该数字乘以1,000,000。
输入:
Country Energy Supply Energy Supply per Capita % Renewable
0 NaN Petajoules Gigajoules %
1 Afghanistan 321 10 78.6693
2 Albania 102 35 100
3 Algeria 1959 51 0.55101
4 American Samoa ... ... 0.641026
预期输出:
Country Energy Supply Energy Supply per Capita % Renewable
0 NaN Petajoules Gigajoules %
1 Afghanistan 3210000 10 78.6693
2 Albania 1020000 35 100
3 Algeria 19590000 51 0.55101
4 American Samoa ... ... 0.641026
当前输出:
Country Energy Supply Energy Supply per Capita % Renewable
0 NaN PetajoulesPeta. Gigajoules %
1 Afghanistan 3210000 10 78.6693
2 Albania 1020000 35 100
3 Algeria 19590000 51 0.55101
4 American Samoa ........ ... 0.641026
答案 0 :(得分:1)
这对我来说具有一百万个值:
import pandas as pd
import numpy as np
data = {"Energy Supply":[1,30,"Petajoules",5,70]*2000000}
energy = pd.DataFrame(data)
输入:
Energy Supply
0 1
1 30
2 Petajoules
3 5
4 70
5 1
6 30
7 Petajoules
8 5
9 70
10 1
11 30
12 Petajoules
13 5
14 70
15 1
16 30
17 Petajoules
18 5
19 70
20 1
21 30
22 Petajoules
23 5
24 70
25 1
26 30
27 Petajoules
28 5
29 70
...
[10000000 rows x 1 columns]
然后我将Series转换为数组并设置值:
arr = energy["Energy Supply"].values
for i in range(len(arr)):
if isinstance(arr[i],int):
arr[i] = arr[i]*1000000
else:
pass
输出看起来像这样:
Energy Supply
0 1000000
1 30000000
2 Petajoules
3 5000000
4 70000000
5 1000000
6 30000000
7 Petajoules
8 5000000
9 70000000
10 1000000
11 30000000
12 Petajoules
13 5000000
14 70000000
15 1000000
16 30000000
17 Petajoules
18 5000000
19 70000000
20 1000000
21 30000000
22 Petajoules
23 5000000
24 70000000
25 1000000
26 30000000
27 Petajoules
28 5000000
29 70000000
...
[10000000 rows x 1 columns]
此解决方案的速度约为申请的两倍:
遍历数组:
loop: 100%|██████████| 10000000/10000000 [00:07<00:00, 1376439.75it/s]
使用“申请”:
apply: 100%|██████████| 10000000/10000000 [00:14<00:00, 687420.00it/s]
如果将系列转换为数字,则字符串值将变为nan值。使用np.where时,将序列转换为数值并乘以值都需要大约5秒钟:
import pandas as pd
import numpy as np
import time
data = {"Energy Supply":[1,30,"Petajoules",5,70]*2000000}
energy = pd.DataFrame(data)
t = time.time()
energy["Energy Supply"] = pd.to_numeric(energy["Energy Supply"],errors="coerce")
energy["Energy_Supply"] = np.where((energy["Energy Supply"]%1==0),energy["Energy Supply"]*100,energy["Energy Supply"])
t1 = time.time()
print(t1-t)
5.275099515914917
但是您也可以在使用pd.to_numeric()之后简单地执行此操作:
energy["Energy Supply"] = energy["Energy Supply"]*1000000
答案 1 :(得分:1)
您可以使用str.isnumeric
检查字符串是否为数字,然后相乘。
energy['Energy Supply'] = energy['Energy Supply'].apply(lambda x: int(x) * 1000000 if str(x).isnumeric() else x)
print (energy)
Country Energy Supply Energy Supply per Capita % Renewable
0 NaN Petajoules Gigajoules %
1 Afghanistan 321000000 10 78.6693
2 Albania 102000000 35 100
3 Algeria 1959000000 51 0.55101
4 American Samoa ... .. 0.641026