假设我有这个数据框:
df = pd.DataFrame({'index':['10a','10a','10a','20b','20b','20b','30c','30c','30c']
,'var_vals': ['aaa','aaa','abb','bbb','bba','bbb','ccc','ccc','cab']
,'var2_vals':['aga','aga','add','bgb','bbd','bgb','cdd','cdd','cda']})
display(df)
看起来像这样:
index var_vals var2_vals
0 10a aaa aga
1 10a aaa aga
2 10a abb add
3 20b bbb bgb
4 20b bba bbd
5 20b bbb bgb
6 30c ccc cdd
7 30c ccc cdd
8 30c cab cda
如何将输出变成一行,而只有新列中的不同之处?
index var_vals var_vals_0 var2_vals var2_vals_0
0 10a aaa abb aga add
1 20b bbb bba bgb bbd
2 30c ccc cab cdd cda
我尝试了groupby,pivot / pivot_table,堆栈/ unstack和融合,但是我要么以巨大的维度结束,要么丢失了数据。
答案 0 :(得分:3)
通过groupby.apply
的一种方法:
df.groupby('index')['var_vals'].apply(lambda x: pd.Series(x.unique())).unstack()
0 1
index
10a aaa abb
20b bbb bba
30c ccc cab
答案 1 :(得分:3)
将pivot
与df.drop_duplicates().assign(key=lambda x : x.groupby('index').cumcount()).pivot('index','key','var_vals')
Out[910]:
key 0 1
index
10a aaa abb
20b bbb bba
30c ccc cab
一起使用
require_once ('Libraries/jpgraph/jpgraph.php');
require_once ('Libraries/jpgraph/jpgraph_line.php');
require_once ('Libraries/jpgraph/jpgraph_bar.php');
function readsunspotdata($aFile, &$aYears, &$aSunspots) {
$lines = @file($aFile,FILE_IGNORE_NEW_LINES|FILE_SKIP_EMPTY_LINES);
if( $lines === false ) {
throw new JpGraphException('Can not read sunspot data file.');
}
foreach( $lines as $line => $datarow ) {
$split = preg_split('/[\s]+/',$datarow);
$aYears[] = substr(trim($split[0]),0,4);
$aSunspots[] = trim($split[1]);
}
}
$year = array();
$ydata = array();
readsunspotdata('yearssn.txt',$year,$ydata);
// Width and height of the graph
$width = 1000; $height = 500;
// Create a graph instance
$graph = new Graph($width,$height);
// Specify what scale we want to use,
// int = integer scale for the X-axis
// int = integer scale for the Y-axis
$graph->SetScale('intint');
// Setup a title for the graph
$graph->title->Set('Sunspot example');
// Setup titles and X-axis labels
$graph->xaxis->title->Set('(year from 1701)');
// Setup Y-axis title
$graph->yaxis->title->Set('(# sunspots)');
// Create the linear plot
$lineplot=new LinePlot($ydata);
// Add the plot to the graph
$graph->Add($lineplot);
// Display the graph
$graph->Stroke();
答案 2 :(得分:3)
这里是另一个:
newdf = pd.DataFrame(df.groupby('index')['var_vals'].unique().tolist()).fillna('')
更新的代码:
dfs = (pd.DataFrame(df.groupby('index')[i].unique().tolist()).fillna('').add_prefix(i+'_')
for i in df.drop('index', 1))
df = pd.concat(dfs, axis=1)
完整示例
将熊猫作为pd导入
df = pd.DataFrame({'index':['10a','10a','10a','20b','20b','20b','30c','30c','30c']
,'var_vals': ['aaa','aaa','abb','bbb','bba','bbb','ccc','ccc','cab']
,'var2_vals':['aga','aga','add','bgb','bbd','bgb','cdd','cdd','cda']})
df = pd.concat(
(pd.DataFrame(df.groupby('index')[i].unique().tolist()).fillna('').add_prefix(i+'_')
for i in df.drop('index', 1)), axis=1)
print(df)
返回:
var2_vals_0 var2_vals_1 var_vals_0 var_vals_1
0 aga add aaa abb
1 bgb bbd bbb bba
2 cdd cda ccc cab
答案 3 :(得分:3)
使用默认构造函数的另一种方法
x = df.drop_duplicates().groupby('index').var_vals.agg(list).to_dict()
pd.DataFrame(x).T
0 1
10a aaa abb
20b bbb bba
30c ccc cab
时间(我猜有点相似):
df = pd.concat([df]*10000).reset_index(drop=True)
%%timeit
x = df.drop_duplicates().groupby('index').var_vals.agg(list).to_dict()
pd.DataFrame(x).T
7.92 ms ± 224 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
%%timeit
df.drop_duplicates().assign(key=lambda x : x.groupby('index').cumcount()).pivot('index','key','var_vals')
8.81 ms ± 74.9 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
%%timeit
df.groupby('index')['var_vals'].apply(lambda x: pd.Series(x.unique())).unstack()
8.83 ms ± 187 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
%%timeit
pd.DataFrame(df.groupby('index')['var_vals'].unique().tolist())
13.3 ms ± 705 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)