我能够使用插入号(在Rstudio中)训练Catboost模型,并且效果很好。
my_catboost <- caret::train(x, y,
method=catboost.caret,
trControl=fitControl,
tuneGrid = param,
metric = "ROC")
如果我使用该模型预测同一会话中的新数据,没问题,它将起作用:
output <- caret::predict.train(my_catboost, newdata=x_testing, type="prob")
但是,如果我保存模型并稍后加载(或保存它,删除“ my_catboost”并加载),则函数predict将使R和Rstudio崩溃,而不会出现错误消息,并且在Rstudio日志中找不到任何内容。加载后,我可以看到在全局环境中创建的模型,看起来不错。
我尝试过R函数的保存和加载,saveRDS和readRDS都崩溃了
谢谢!
答案 0 :(得分:2)
您误解了我的评论。这是使用内置数据集Sonar的答案:
library(caret)
library(catboost)
library(mlbench)
data(Sonar)
创建训练和测试数据集:
set.seed(1)
tr <- createDataPartition(Sonar$Class, p = 0.7, list = FALSE)
trainer <- Sonar[tr,]
tester <- Sonar[-tr,]
火车模型:
fitControl <- trainControl(method = "cv",
number = 3,
savePredictions = TRUE,
summaryFunction = twoClassSummary,
classProbs = TRUE)
model <- train(x = trainer[,1:60],
y = trainer$Class,
method = catboost.caret,
trControl = fitControl,
tuneLength = 5,
metric = "ROC")
使用插入符号进行预测:
preds1 <- predict(model, tester, type = "prob")
保存最终模型:
catboost::catboost.save_model(model$finalModel, "model")
加载保存的模型:
model2 <- catboost::catboost.load_model("model")
使用保存的模型进行预测:
preds2 <- catboost.predict(model2,
catboost.load_pool(tester),
prediction_type = "Probability")
检查预测是否相等
all.equal(preds1[,2], preds2)
编辑:时间:
saveRDS(model, "caret.model.rds")
model3 <- readRDS("caret.model.rds")
preds3 <- predict(model3, tester, type = "prob")
导致R会话崩溃
R version 3.5.0 (2018-04-23)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows >= 8 x64 (build 9200)
Matrix products: default
locale:
[1] LC_COLLATE=English_United States.1252 LC_CTYPE=English_United States.1252 LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C LC_TIME=English_United States.1252
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] mlbench_2.1-1 catboost_0.10.3 caret_6.0-80 ggplot2_2.2.1 lattice_0.20-35 RevoUtils_11.0.0
[7] RevoUtilsMath_11.0.0
loaded via a namespace (and not attached):
[1] httr_1.3.1 magic_1.5-8 ddalpha_1.3.3 tidyr_0.8.1 sfsmisc_1.1-2 jsonlite_1.5
[7] viridisLite_0.3.0 splines_3.5.0 foreach_1.5.0 prodlim_2018.04.18 assertthat_0.2.0 stats4_3.5.0
[13] DRR_0.0.3 yaml_2.1.19 robustbase_0.93-0 ipred_0.9-6 pillar_1.2.3 glue_1.2.0
[19] digest_0.6.15 colorspace_1.3-2 recipes_0.1.2 htmltools_0.3.6 Matrix_1.2-14 plyr_1.8.4
[25] psych_1.8.4 timeDate_3043.102 pkgconfig_2.0.1 CVST_0.2-2 broom_0.4.4 purrr_0.2.4
[31] scales_0.5.0 gower_0.1.2 lava_1.6.1 tibble_1.4.2 withr_2.1.2 nnet_7.3-12
[37] lazyeval_0.2.1 mnormt_1.5-5 survival_2.41-3 magrittr_1.5 nlme_3.1-137 MASS_7.3-49
[43] dimRed_0.1.0 foreign_0.8-70 class_7.3-14 tools_3.5.0 data.table_1.11.4 stringr_1.3.1
[49] plotly_4.7.1 kernlab_0.9-26 munsell_0.4.3 bindrcpp_0.2.2 compiler_3.5.0 RcppRoll_0.2.2
[55] rlang_0.2.0 grid_3.5.0 iterators_1.0.10 htmlwidgets_1.2 geometry_0.3-6 gtable_0.2.0
[61] ModelMetrics_1.1.0 codetools_0.2-15 abind_1.4-5 reshape2_1.4.3 R6_2.2.2 lubridate_1.7.4
[67] dplyr_0.7.5 bindr_0.1.1 stringi_1.1.7 parallel_3.5.0 Rcpp_0.12.17 rpart_4.1-13
[73] DEoptimR_1.0-8 tidyselect_0.2.4