如何打印keras Multi输出的混淆矩阵?

时间:2018-10-18 12:32:24

标签: python neural-network keras deep-learning

我有一个问题。 我想打印一个混淆矩阵。 我的模型是keras的功能性api。 和 模型=模型(输入= [数据输入],输出= [输出_1,输出_2])

output_1 = 9个类别 输出_2 = 5个课程

我的多分类模型

data_input = Input(shape=(trainX.shape[1], trainX.shape[2]))

Conv1 = Conv1D(filters=50, kernel_size=4, padding='valid',  activation='relu', strides=1)(data_input)
Conv1 = MaxPooling1D(pool_size=2)(Conv1)

Conv2 = Conv1D(filters=50, kernel_size=4, padding='valid', activation='relu', strides=1)(Conv1)
Conv2 = MaxPooling1D(pool_size=2)(Conv2)

Conv3 = Conv1D(filters=50, kernel_size=4, padding='valid', activation='relu', strides=1)(Conv2)
Conv3 = MaxPooling1D(pool_size=2)(Conv3)

Classification1 = LSTM(128, input_shape=(47, 50), return_sequences=False)(Conv3)
Classification2 = GRU(128, input_shape=(47, 50), return_sequences=False)(Conv3)

activity = Dense(9)(Classification1)
activity = Activation('softmax')(activity)

speed = Dense(5)(Classification2)
speed = Activation('softmax')(speed)

model = Model(inputs=[data_input], outputs=[activity, speed])

model.compile(loss= 'categorical_crossentropy' , optimizer='adam', metrics=[ 'accuracy' ])
print(model.summary())

history = model.fit(trainX, {'activation_1': trainY_Activity, 'activation_2': trainY_Speed},
          validation_data=(testX, {'activation_1': testY_Activity, 'activation_2': testY_Speed}),
          epochs=epochs, batch_size=batch_size, verbose=1, shuffle=False)

0 个答案:

没有答案