我正在运行从git中挑选的代码以了解其工作原理。 这是我可以理解的准确性/损失,但我需要帮助来阐明此混淆矩阵和报告。需要您的帮助。
损耗:0.0553-acc:0.9826-val_loss:0.0492-val_acc:0.9825
混乱矩阵
[[22 10 11 1 15 8 8 8 26 15 14 25 3 33 20]
[ 9 3 7 3 13 6 2 5 8 6 8 3 0 16 17]
[11 6 8 0 8 5 1 4 7 9 8 6 1 20 12]
[ 3 0 2 0 0 2 0 0 2 2 2 2 0 4 2]
[25 8 3 4 18 10 7 8 11 11 10 7 2 23 11]
[12 3 4 2 7 13 10 3 15 6 7 3 3 19 9]
[ 7 5 4 3 5 6 8 4 7 4 7 8 2 19 12]
[ 6 6 3 0 9 7 7 4 6 8 7 6 2 23 6]
[18 8 7 2 16 8 10 17 20 25 22 12 3 28 14]
[17 9 10 3 15 6 7 8 16 15 15 21 0 33 13]
[15 5 7 3 13 15 8 9 12 8 10 14 2 32 14]
[17 8 7 0 7 7 6 8 12 15 8 9 3 32 11]
[ 2 2 1 0 1 1 5 0 4 4 4 3 0 1 1]
[38 22 26 2 20 15 19 13 41 34 24 20 7 50 23]
[14 9 9 0 11 11 9 7 18 20 16 14 1 22 14]]
下面是分类报告。
Classification Report
precision recall f1-score support
A 0.10 0.10 0.10 219
B 0.03 0.03 0.03 106
C 0.07 0.08 0.07 106
D 0.00 0.00 0.00 21
E 0.11 0.11 0.11 158
F 0.11 0.11 0.11 116
G 0.07 0.08 0.08 101
H 0.04 0.04 0.04 100
I 0.10 0.10 0.10 210
J 0.08 0.08 0.08 188
K 0.06 0.06 0.06 167
L 0.06 0.06 0.06 150
M 0.00 0.00 0.00 29
N 0.14 0.14 0.14 354
O 0.08 0.08 0.08 175
micro avg 0.09 0.09 0.09 2200
macro avg 0.07 0.07 0.07 2200
weighted avg 0.09 0.09 0.09 2200
请帮助我了解分类报告。我读了有关混淆矩阵的理论,但无法清楚地说明这个喀拉斯输出。另外,什么是微平均,微平均等。需要帮助了解。以上精度似乎还不错。请原谅我,我对此很陌生。