在下面的代码中,我对普通的平方线性系统Ax = b进行了部分枢轴化,实现了高斯消去。我已经测试了我的代码,并产生了正确的输出。我用它来求解Ax = b,其中A是随机100x100矩阵,b是随机100x1向量。**
但是,现在我需要一些帮助,以将我的解决方案与使用numpy.linalg.solve
获得的解决方案进行比较。如何将此比较添加到我的代码中?
import numpy as np
def GEPP(A, b, doPricing = True):
'''
Gaussian elimination with partial pivoting.
input: A is an n x n numpy matrix
b is an n x 1 numpy array
output: x is the solution of Ax=b
with the entries permuted in
accordance with the pivoting
done by the algorithm
post-condition: A and b have been modified.
'''
n = len(A)
if b.size != n:
raise ValueError("Invalid argument: incompatible sizes between"+
"A & b.", b.size, n)
# k represents the current pivot row. Since GE traverses the matrix in the
# upper right triangle, we also use k for indicating the k-th diagonal
# column index.
# Elimination
for k in range(n-1):
if doPricing:
# Pivot
maxindex = abs(A[k:,k]).argmax() + k
if A[maxindex, k] == 0:
raise ValueError("Matrix is singular.")
# Swap
if maxindex != k:
A[[k,maxindex]] = A[[maxindex, k]]
b[[k,maxindex]] = b[[maxindex, k]]
else:
if A[k, k] == 0:
raise ValueError("Pivot element is zero. Try setting doPricing to True.")
#Eliminate
for row in range(k+1, n):
multiplier = A[row,k]/A[k,k]
A[row, k:] = A[row, k:] - multiplier*A[k, k:]
b[row] = b[row] - multiplier*b[k]
# Back Substitution
x = np.zeros(n)
for k in range(n-1, -1, -1):
x[k] = (b[k] - np.dot(A[k,k+1:],x[k+1:]))/A[k,k]
return x
if __name__ == "__main__":
A = np.round(np.random.rand(100, 100)*10)
b = np.round(np.random.rand(100)*10)
print (GEPP(np.copy(A), np.copy(b), doPricing = False))
答案 0 :(得分:1)
要比较这两种解决方案,请使用np.allclose
来验证两个数组在合理的裕度内逐个元素一致。人们不应该期望浮点运算中的完全相等。
my_solution = GEPP(np.copy(A), np.copy(b), doPricing=False)
numpy_solution = np.linalg.solve(A, b)
if np.allclose(my_solution, numpy_solution):
print("Yay")
else:
print("NOOOOO")
这将显示“是”。