我有以下要融合的数据框:
import numpy as np
import pandas as pd
dates = pd.date_range('1/1/2014', periods=4)
df = pd.DataFrame(np.eye(4, ), index=dates, columns=['A_var1', 'A_var2', 'B_var1', 'B_var2'])
print(df)
A_var1 A_var2 B_var1 B_var2
2014-01-01 1.0 0.0 0.0 0.0
2014-01-02 0.0 1.0 0.0 0.0
2014-01-03 0.0 0.0 1.0 0.0
2014-01-04 0.0 0.0 0.0 1.0
我想获得以下信息:
type var1 var2
2014-01-01 A 1.0 0.0
2014-01-01 B 0.0 0.0
2014-01-02 A 0.0 1.0
2014-01-02 B 0.0 0.0
2014-01-03 A 0.0 0.0
2014-01-03 B 1.0 0.0
2014-01-04 A 0.0 0.0
2014-01-04 B 0.0 1.0
关于如何有效地做到这一点的任何想法?我知道我可以使用melt函数,但是无法在那种情况下使用它。
非常感谢,
答案 0 :(得分:3)
您可以在多索引列上使用stack
。
In [304]: df.columns = df.columns.str.split('_', expand=True)
In [305]: df.stack(0).reset_index(1)
Out[305]:
level_1 var1 var2
2014-01-01 A 1.0 0.0
2014-01-01 B 0.0 0.0
2014-01-02 A 0.0 1.0
2014-01-02 B 0.0 0.0
2014-01-03 A 0.0 0.0
2014-01-03 B 1.0 0.0
2014-01-04 A 0.0 0.0
2014-01-04 B 0.0 1.0