今天我正在尝试识别物体的边缘。
这样做我得到了很好的结果。
import cv2
img = cv2.imread("0.png")
img2 = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
img2 = cv2.equalizeHist(img2)
img2 = cv2.GaussianBlur(img2, (7, 7), 0)
edges = cv2.Canny(img2, 180, 300)
im2, contours, hierarchy = cv2.findContours(edges, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
cv2.drawContours(img, contours, -1, (0, 255, 0), 1)
cv2.imshow('img', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
我的最终目标是找到边缘之间的中心线, (每个X上的(MaxY + MinY)/ 2的集合) 理想的结果应该是这样的:(不好意思的手绘图)
有人可以让我知道该怎么做吗? 非常感谢。
答案 0 :(得分:4)
首先,您应该准备图像,以便找到自己的轮廓(阈值,直方图均衡等)。轮廓返回一组代表轮廓的(x,y)坐标,因此第一步,您应将上边缘与底部分开(将其对半分割)。在我的示例中,我补充了轮廓的轮廓,但请注意,这不适用于曲线!您将必须制定一种算法来划分上侧和下侧。完成此操作后,您可以创建两个列表,每个x坐标包含一个元素。然后只需计算中点并在图像上指出一个点即可。
示例代码:
import cv2
import numpy as np
img = cv2.imread('centerline.png')
mask = np.zeros((img.shape[:2]), np.uint8)
h2, w2 = img.shape[:2]
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
equ = cv2.equalizeHist(gray)
_, thresh = cv2.threshold(equ,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
kernel = np.ones((5,5),np.uint8)
opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel)
_, contours, hierarchy = cv2.findContours(opening,cv2.RETR_TREE,cv2.CHAIN_APPROX_NONE)
for cnt in contours:
x,y,w,h = cv2.boundingRect(cnt)
print(h, w)
if h < 30 and w > 270:
cv2.drawContours(mask, [cnt], 0, (255,255,255), -1)
res = cv2.bitwise_and(img, img, mask=mask)
gray = cv2.cvtColor(res,cv2.COLOR_BGR2GRAY)
_, thresh = cv2.threshold(gray,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
blur = cv2.GaussianBlur(thresh,(5,5),0)
_, contours, hierarchy = cv2.findContours(blur,cv2.RETR_TREE,cv2.CHAIN_APPROX_NONE)
cnt = max(contours, key=cv2.contourArea)
M = cv2.moments(cnt)
cy = int(M['m01']/M['m00'])
mask = np.zeros((img.shape[:2]), np.uint8)
cv2.drawContours(mask, [cnt], 0, (255,255,255), -1)
up = []
down = []
for i in cnt:
x = i[0][0]
y = i[0][1]
if x == 0:
pass
elif x == w2:
pass
else:
if y > cy:
down.append(tuple([x,y]))
elif y < cy:
up.append(tuple([x,y]))
else:
pass
up.sort(key = lambda x: x[0])
down.sort(key = lambda x: x[0])
up_1 = []
down_1 = []
for i in range(0, len(up)-1):
if up[i][0] != up[i+1][0]:
up_1.append(up[i])
else:
pass
for i in range(0, len(down)-1):
if down[i][0] != down[i+1][0]:
down_1.append(down[i])
else:
pass
lines = zip(up_1, down_1)
for i in lines:
x1 = i[0][0]
y1 = i[0][1]
x2 = i[1][0]
y2 = i[1][1]
middle = np.sqrt(((x2-x1)**2)+((y2-y1)**2))
cv2.circle(img, (x1, y1+int(middle/2)), 1, (0,0,255), -1)
cv2.imshow('img', img)
结果: