Tensorflow中的分类和连续交叉要素列

时间:2018-10-16 09:12:20

标签: python python-3.x tensorflow

在使用Tensorflow的估计量和feature_column时,可以越过分类列和桶形连续列crossed column,但不能越过分类和数值交叉。是否可以从https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/feature_column/feature_column.py#L704实现此功能?

在Tensforflow图中看到实现相同结果的任何其他方法,也将是一件很棒的事情。

import numpy as np

cont = np.array([1,2,3])
cat = np.array(['cat', 'dog', 'cat'])

cross_function(cat, cont) = np.array([[1,0],[0,2],[3,0]])

1 个答案:

答案 0 :(得分:1)

在这里回答我自己的问题。涉及的步骤是:

  1. 对分类特征进行数字编码
    • 在图表中,因此可以在火车和服务范围内
  2. 一次热编码数值结果
  3. 将此与连续变量相乘

代码:

import numpy as np
import tensorflow as tf

cont = np.array([1,2,3])
cat = np.array(['cat', 'dog', 'cat'])
categories = np.unique(cat)

def categorical_continuous_interaction(categorical_onehot, continuous):

    cont = tf.expand_dims(continuous, 0)
    return tf.transpose(tf.multiply(tf.transpose(categorical_onehot), cont))

def transformation_function(feature_dictionary, mapping_table):

    continuous_feature = feature_dictionary['cont']

    categorical_feature = mapping_table.lookup(feature_dictionary['cat'])
    onehot = tf.one_hot(categorical_feature, categories.shape[0])
    cross_feature = categorical_continuous_interaction(onehot, continuous_feature)

    return {'feature_name': cross_feature}

def input_function(dataframe, label_key, ...):
    # categorical mapping tables, these must be generated outside of the dataset 
    # transformation function but within the input function
    mapping_table = tf.contrib.lookup.index_table_from_tensor(
        mapping=tf.constant(categories),
        num_oov_buckets=0, 
        default_value=-1
    )

    # Generate the dataset of a dictionary of all of the dataframes columns
    dataset = tf.data.Dataset.from_tensor_slices(dict(dataframe))
    # Convert to a dataset of tuples of dicts with the labels as one tuple
    dataset = dataset.map(lambda x: split_label(x, label_key))
    # Transform the features dict within the dataset
    dataset = dataset.map(lambda features, labels: (transformation_function(
        features, mapping_table=mapping_table), labels))

    ...

    return dataset

def serving_input_fn():
    # categorical mapping tables, these must be generated outside of the dataset 
    # transformation function but within the input function
    mapping_table=tf.contrib.lookup.index_table_from_tensor(
        mapping=tf.constant(categories),
        num_oov_buckets=0, 
        default_value=-1
    )
    numeric_receiver_tensors = {
        name: tf.placeholder(dtype=tf.float32, shape=[1], name=name+"_placeholder")
        for name in numeric_feature_column_names
    }
    categorical_receiver_tensors = {
        name: tf.placeholder(dtype=tf.string, shape=[1], name=name+"_placeholder")
        for name in categorical_feature_column_names
    }
    receiver_tensors = {**numeric_receiver_tensors, **categorical_receiver_tensors}

    features = transformation_function(receiver_tensors, 
        country_mapping_table=country_mapping_table)

    return tf.estimator.export.ServingInputReceiver(features, receiver_tensors)