答案 0 :(得分:1)
执行此操作的一种方法(如果矩形大小在某种程度上可以预测)是:
答案 1 :(得分:0)
只需添加到Danyals答案中,我已经添加了示例代码,并在注释中编写了步骤。对于此图像,您甚至不需要在图像上执行形态学打开。但是通常建议对图像中的这种噪点进行推荐。干杯!
import cv2
import numpy as np
# Read the image and create a blank mask
img = cv2.imread('napis.jpg')
h,w = img.shape[:2]
mask = np.zeros((h,w), np.uint8)
# Transform to gray colorspace and invert Otsu threshold the image
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
_, thresh = cv2.threshold(gray,0,255,cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)
# ***OPTIONAL FOR THIS IMAGE
### Perform opening (erosion followed by dilation)
#kernel = np.ones((2,2),np.uint8)
#opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel)
# ***
# Search for contours, select the biggest and draw it on the mask
_, contours, hierarchy = cv2.findContours(thresh, # if you use opening then change "thresh" to "opening"
cv2.RETR_TREE,cv2.CHAIN_APPROX_NONE)
cnt = max(contours, key=cv2.contourArea)
cv2.drawContours(mask, [cnt], 0, 255, -1)
# Perform a bitwise operation
res = cv2.bitwise_and(img, img, mask=mask)
########### The result is a ROI with some noise
########### Clearing the noise
# Create a new mask
mask = np.zeros((h,w), np.uint8)
# Transform the resulting image to gray colorspace and Otsu threshold the image
gray = cv2.cvtColor(res,cv2.COLOR_BGR2GRAY)
_, thresh = cv2.threshold(gray,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
# Search for contours and select the biggest one again
_, contours, hierarchy = cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_NONE)
cnt = max(contours, key=cv2.contourArea)
# Draw it on the new mask and perform a bitwise operation again
cv2.drawContours(mask, [cnt], 0, 255, -1)
res = cv2.bitwise_and(img, img, mask=mask)
# If you will use pytesseract it is wise to make an aditional white border
# so that the letters arent on the borders
x,y,w,h = cv2.boundingRect(cnt)
cv2.rectangle(res,(x,y),(x+w,y+h),(255,255,255),1)
# Crop the result
final_image = res[y:y+h+1, x:x+w+1]
# Display the result
cv2.imshow('img', final_image)
cv2.waitKey(0)
cv2.destroyAllWindows()
结果: