Sklearn的PCA在最后一行给出“错误”输出

时间:2018-10-12 11:16:33

标签: python scikit-learn pca

我试图通过sklearn的PCA (n_components=2)运行数据,发现最后一行的y值不同于相同输入值的其他值。值得注意的是,输入数据仅包含两个不同的条目,并且当更改条目的出现次数时,错误就会消失。

请找到下面的代码以复制错误。

import pandas as pd
from sklearn.decomposition import PCA

lst1 = [[-0.485886999,0,-0.485886999,-0.485886999,-0.485886999,0,-0.485886999,-0.485886999,-0.485886999,-0.485886999,-0.485886999,0.485886999,-0.485886999,-0.485886999,-0.485886999,-0.485886999]]*7798
lst2 = [[2.0580917,0,2.0580917,2.0580917,2.0580917,0,2.0580917,2.0580917,2.0580917,2.0580917,2.0580917,-2.0580917,2.0580917,2.0580917,2.0580917,2.0580917]]*1841

df_lst1 = pd.DataFrame(lst1)
df_lst2 = pd.DataFrame(lst2)
test = pd.concat([df_lst2, df_lst1], axis=0).reset_index(drop=True)

pca = PCA(n_components=2)
pca.fit(test)
result = pd.DataFrame(pca.transform(test), index=test.index)
print(result)

最后三行的输入(三行相同):

            0   1         2         3         4   5         6     ...           9         10        11        12        13        14        15
9636 -0.485887   0 -0.485887 -0.485887 -0.485887   0 -0.485887    ...    -0.485887 -0.485887  0.485887 -0.485887 -0.485887 -0.485887 -0.485887
9637 -0.485887   0 -0.485887 -0.485887 -0.485887   0 -0.485887    ...    -0.485887 -0.485887  0.485887 -0.485887 -0.485887 -0.485887 -0.485887
9638 -0.485887   0 -0.485887 -0.485887 -0.485887   0 -0.485887    ...    -0.485887 -0.485887  0.485887 -0.485887 -0.485887 -0.485887 -0.485887

最后三行的输出:

             0             1
9636 -1.818023  1.679370e-17
9637 -1.818023  1.679370e-17
9638 -1.818023  0.000000e+00

0 个答案:

没有答案