我有一个简单的for循环,用于模式匹配和从另一个矩阵获取值。大量行的运行速度有点慢。我正在尝试将其转换为函数,然后使用apply。但是我没有得到与for循环相同的结果。有人可以告诉我我在做什么错。谢谢
这是for循环:
exp_target_com = structure(list(X06...2239_normal = c(12.2528814946075, 8.25298920937508), X06...2239_tumor = c(12.476021286337, 6.08504757235585), Ensembl_Id = structure(c(NA_integer_,
NA_integer_), .Label = "", class = "factor"), HGNC = structure(c(NA_integer_,
NA_integer_), .Label = "", class = "factor")), .Names = c("X06...2239_normal", "X06...2239_tumor", "Ensembl_Id", "HGNC"), class = "data.frame", row.names = c("A_23_P117082", "A_33_P3246448"))
head(exp_target_com)
#> X06...2239_normal X06...2239_tumor Ensembl_Id HGNC
#> A_23_P117082 12.252881 12.476021 <NA> <NA>
#> A_33_P3246448 8.252989 6.085048 <NA> <NA>
probe_anno = structure(c("A_23_P117082", "A_33_P3246448", "NM_015987", "NM_080671", "NM_015987", "NM_080671", "ENSG00000013583", "ENSG00000152049",
"HEBP1", "KCNE4"), .Dim = c(2L, 5L), .Dimnames = list(c("44693",
"31857"), c("Probe.ID", "SystematicName", "refseq_biomart", "Ensembl_Id",
"HGNC")))
probe_anno
#> Probe.ID SystematicName refseq_biomart Ensembl_Id HGNC
#> 44693 A_23_P117082 NM_015987 NM_015987 ENSG00000013583 HEBP1
#> 31857 A_33_P3246448 NM_080671 NM_080671 ENSG00000152049 KCNE4
for(i in 1:nrow(exp_target_com)) {
pos <- which(as.character(probe_anno$Probe.ID) == rownames(exp_target_com)[i])
if(length(pos) > 0) {
exp_target_com[i,3] <- as.character(probe_anno$Ensembl_Id)[pos[1]]
exp_target_com[i,4] <- as.character(probe_anno$HGNC)[pos[1]]
}
}
这里是函数并应用
get_anno <- function(data_row, probe_anno) {
pos <- which(as.character(probe_anno$Probe.ID) == rownames(data_row))
if (length(pos) > 0) {
data_row$Ensembl_Id <- as.character(probe_anno$Ensembl_Id)[pos[1]]
data_row$HGNC <- as.character(probe_anno$HGNC)[pos[1]]
}
return(data_row)
}
apply(exp_target_com, c(1,2), FUN = function(x) get_anno(x, probe_anno))
答案 0 :(得分:0)
同意注释,使用merge
或dplyr
等内置连接函数等内置函数看起来会更简单,更快。在这里,我将行名转换为列,并使用它与probe_anno
联接。
library(dplyr)
exp_target_com2 <- exp_target_com %>%
select(-3, -4) %>%
tibble::rownames_to_column("Probe.ID") %>%
left_join(probe_anno %>% as.data.frame(), by = ("Probe.ID"))
> exp_target_com2
Probe.ID X06...2239_normal X06...2239_tumor SystematicName refseq_biomart Ensembl_Id HGNC
1 A_23_P117082 12.252881 12.476021 NM_015987 NM_015987 ENSG00000013583 HEBP1
2 A_33_P3246448 8.252989 6.085048 NM_080671 NM_080671 ENSG00000152049 KCNE4