l有5个邻接矩阵(块数组):A,B,C,D,E。每个矩阵的尺寸为[20,20]。
给出A,B,C,D,E,l要构建F,该F堆叠5个邻接矩阵。由于我们有5个[20,20]的2D数组,因此F的维数为[20 * 5,20 * 5],如下所示:
F = np.zeros((100,100))
F=[
[A,0,0,0,...,0],
[0,...,B,...,0],
[0,...,..,C,0],
[0,.........D,..,0],
[0,...........,E],
]
这样:
A is indexed at F[0][:20]
B is indexed at F[1][20:40]
C is indexed at F[2][40:60]
D is indexed at F[3][60:80]
E is indexed at F[4][80:100]
对于大量邻接矩阵,有效的numpy方法是什么?让我们将 n 个邻接矩阵堆叠到[n*20,n*20]
答案 0 :(得分:2)
您可以使用scipy.sparse.block_diag
:
>>> AtoE = np.add.outer(np.arange(5, 10), np.zeros((3, 3), int))
>>> scipy.sparse.block_diag(AtoE).A
array([[5, 5, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[5, 5, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[5, 5, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 6, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 6, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 6, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 7, 7, 7, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 7, 7, 7, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 7, 7, 7, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 8, 8, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 8, 8, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 8, 8, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 9, 9],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 9, 9],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 9, 9]], dtype=int64)
无论如何,稀疏存储可能是个好主意。
或者,如果您确实想使用密集数组,这是一种更直接的方法:
>>> A = AtoE[0]
>>> N, N = A.shape
>>> k = len(AtoE)
>>> out = np.zeros((k, N, k, N), A.dtype)
>>> np.einsum('ijik->ijk', out)[...] = AtoE
>>> out.reshape(k*N, k*N)
array([[5, 5, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[5, 5, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[5, 5, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 6, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 6, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 6, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 7, 7, 7, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 7, 7, 7, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 7, 7, 7, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 8, 8, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 8, 8, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 8, 8, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 9, 9],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 9, 9],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 9, 9]])