我正在尝试解决非常简单的非线性问题。这是XOR
门。
我是我的学校知识。 XOR
可以通过使用2个输入节点,2个隐藏层节点来解决。和1个输出。这是二进制分类问题。
我生成1000
或0
的随机整数1
,然后进行反向传播。但是由于某种未知原因,我的网络没有学到任何东西。训练精度恒定为50
。
# coding: utf-8
import matplotlib
import torch
import torch.nn as nn
from torch.autograd import Variable
matplotlib.use('TkAgg') # My buggy OSX 10.13.6 requires this
import matplotlib.pyplot as plt
from torch.utils.data import Dataset
from tqdm import tqdm
import random
N = 1000
batch_size = 10
epochs = 40
hidden_size = 2
output_size = 1
lr = 0.1
def return_xor(N):
tmp_x = []
tmp_y = []
for i in range(N):
a = (random.randint(0, 1) == 1)
b = (random.randint(0, 1) == 1)
if (a and not b) or (not a and b):
q = True
else:
q = False
input_features = (a, b)
output_class = q
tmp_x.append(input_features)
tmp_y.append(output_class)
return tmp_x, tmp_y
# In[495]:
# Training set
x, y = return_xor(N)
x = torch.tensor(x, dtype=torch.float, requires_grad=True)
y = torch.tensor(y, dtype=torch.float, requires_grad=True)
# Test dataset
x_test, y_test = return_xor(100)
x_test = torch.tensor(x_test)
y_test = torch.tensor(y_test)
class MyDataset(Dataset):
"""Define my own `Dataset` in order to use `Variable` with `autograd`"""
def __init__(self, x, y):
self.x = x
self.y = y
def __getitem__(self, index):
return self.x[index], self.y[index]
def __len__(self):
return len(self.x)
dataset = MyDataset(x, y)
test_dataset = MyDataset(x_test, y_test)
print(dataset.x.shape)
print(dataset.y.shape)
# Make data iterable by loading to a loader. Shuffle, batch_size kwargs put them here in order to remind I myself
train_loader = torch.utils.data.DataLoader(dataset=dataset, batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False)
print(f"They are {len(train_loader)} batches in the dataset")
shown = 0
for (x, y) in train_loader:
if shown == 1:
break
print(f"{x.shape} {x.dtype}")
print(f"{y.shape} {y.dtype}")
shown += 1
class MyModel(nn.Module):
"""
Binary classification
2 input nodes
2 hidden nodes
1 output node
"""
def __init__(self, input_size, hidden_size, output_size):
super().__init__()
self.fc1 = torch.nn.Linear(input_size, hidden_size)
self.fc2 = torch.nn.Linear(hidden_size, output_size)
self.sigmoid = torch.nn.Sigmoid()
def forward(self, out):
out = self.fc1(out)
out = self.fc2(out)
out = self.sigmoid(out)
return out
# Create my network
net = MyModel(dataset.x.shape[1], hidden_size, output_size)
CUDA = torch.cuda.is_available()
if CUDA:
net = net.cuda()
criterion = torch.nn.BCELoss(reduction='elementwise_mean')
optimizer = torch.optim.SGD(net.parameters(), lr=lr)
# Train the network
correct_train = 0
total_train = 0
for epoch in range(epochs):
for i, (batches, labels) in enumerate(train_loader):
batcesh = Variable(batches.float())
labels = Variable(labels.float())
output = net(batches) # Forward pass
optimizer.zero_grad()
loss = criterion(output, labels.view(10, 1))
loss.backward()
optimizer.step()
total_train += labels.size(0)
correct_train += (predicted == labels.long()).sum()
if (i + 1) % 10 == 0:
print(f"""
Epoch {epoch+1}/{epochs},
Iteration {i+1}/{len(dataset)//batch_size},
Training Loss: {loss.item()},
Training Accuracy: {100*correct_train/total_train}
""")
解决方案:
我已经初始化权重,自适应学习率
https://github.com/elcolie/nnbootcamp/blob/master/Study-XOR.ipynb
答案 0 :(得分:3)
我不确定您得到什么结果,因为您在问题中发布的代码不起作用(它提供了pytorch 0.4.1的错误,例如未定义的预测错误等)。但是除了语法问题之外,还有其他问题。
您的模型实际上不是两层,因为它在第一个输出之后不使用非线性。实际上,这是一层网络,并且要进行修复,可以按如下所示修改模型的forward
:
def forward(self, out):
out = torch.nn.functional.relu(self.fc1(out))
out = self.fc2(out)
out = self.sigmoid(out)
return out
您也可以尝试S形或tanh非线性...但是非线性是必须的。这应该可以解决问题。
我还看到您仅使用2个隐藏单元。这可能是限制性的,您可能希望将其增加到5或10。