我目前正在学习OCaml语言,并且遇到一个似乎无法解决问题的问题时,正在解决运动问题。这是问题:
“编写一个函数differentiate : expression * string -> expression
,该函数接收一个代数方程和一个字符串作为参数,并返回该参数方程的微分形式。
例如,diff (Add [Mult [Int 3 ; Exp("x", 2)] ; Mult [Int 6 ; Variable "x"], "x")
将产生结果:
Add [Mult [Int 6 ; Variable "x"] ; Int 6]
“
这是我编写的代码:
type expression =
| Int of int
| Variable of string
| Exponent of string * int
| Mult of expression list
| Add of expression list
let rec differentiate : expression * string -> expression
= fun (exp, x) ->
match exp with
| Int a -> Int 0
| Variable a -> if (a = x) then Int 1 else Variable a
| Exponent (a, b) -> if (a = x) then
match b with
| 2 -> Mult [Int 2; Variable a]
| _ -> Mult [Int b; Exponent (a, b - 1)]
else Int 0
| Mult [Int a; Int b] -> Const (a * b)
| Mult (Int a::[Variable b]) -> Mult (Int a::[differentiate (Variable b, x)])
| Mult (Int a::[Exponent (e1, e2)]) -> Mult (Int a::[differentiate (Exponent (e1, e2),
x)])
| Mult (Int a::[Mult (Int b :: l)]) -> Mult (Int (a * b) :: l)
| Add l -> match l with
| [] -> l
| hd::tl -> Add ((differentiate (hd, x)) :: tl)
;;
我的算法基本上是执行严格的模式匹配。更具体地说,对于Mult
,第一个元素始终是整数,因此我对第二个元素执行了模式匹配。对于Add
,我的计划是编写函数,以便它在每个元素上执行函数differentiate
。这是我想问的特定问题。
实际上,此代码使我在模式匹配的Add l
部分出现了错误。错误消息指出:Error: This expression has type (expression list) but an expression was expected of type (expression).
据我所知,我确定Add l
是expression
类型,而不是expression list
类型。为什么会产生此错误消息?
在此特定示例中,我不确定如何执行递归。我最初的想法是该函数应该只执行一次,否则结果将主要由Int 0
或Int 1
组成。如果我错了,请纠正我。
任何反馈,我们将不胜感激。谢谢!
答案 0 :(得分:1)
type exp =
| Int of int
| Var of string
| Exp of string * int
| Add of exp list
| Mult of exp list
let rec diff x = function
| Int _ -> Int 0
| Var y -> Int (if x = y then 1 else 0)
| Exp (y, n) -> if x = y then Mult [Int n; Exp (y, n - 1)] else Int 0
| Add exp_list -> Add (List.map (diff x) exp_list)
| Mult exp_list ->
let rec terms acc (left, right) =
match right with
| [] -> acc
| hd :: tl -> terms ((hd, left @ tl) :: acc) (hd :: left, tl) in
Add (List.map (fun (f, g) -> Mult [diff x f; Mult g]) (terms [] ([], exp_list)))
let rec norm = function
| Exp (_, 0) -> Int 1
| Exp (x, 1) -> Var x
| Add exp_list ->
let int_list, rest = List.fold_left (fun (int_list, rest) exp ->
match exp with
| Int i -> i :: int_list, rest
| Add (Int i :: exp_list) -> i :: int_list, exp_list @ rest
| Add exp_list -> int_list, exp_list @ rest
| _ -> int_list, exp :: rest) ([], []) (List.map norm exp_list) in
let sum = List.fold_left (+) 0 int_list in
begin match sum, rest with
| _, [] -> Int sum
| 0, [e] -> e
| 0, _ -> Add rest
| _ -> Add (Int sum :: rest) end
| Mult exp_list ->
let int_list, rest = List.fold_left (fun (int_list, rest) exp ->
match exp with
| Int i -> i :: int_list, rest
| Mult (Int i :: exp_list) -> i :: int_list, exp_list @ rest
| Mult exp_list -> int_list, exp_list @ rest
| _ -> int_list, exp :: rest) ([], []) (List.map norm exp_list) in
let prod = List.fold_left ( * ) 1 int_list in
begin match prod, rest with
| _, [] -> Int prod
| 0, _ -> Int 0
| 1, [e] -> e
| 1, _ -> Mult rest
| _ -> Mult (Int prod :: rest) end
| (Int _ | Var _ | Exp _) as e -> e
这是解决此问题的一种可能的方法。想法是首先实现一种算法,通过递归表达式的结构来执行区分。而且我们应该保持简单,也就是说,我们不在乎语法树的简化,我们只在乎正确计算差异。然后,在第二步中,我们将树简化为“正常”形式(不确定是否对于相同的表达式总是产生相同的结果,但是由于问题并未指定我们应该执行哪些简化,因此我想免费选择)。
一些例子:
# norm (diff "x" (Add [Mult [Int 3 ; Exp("x", 2)] ; Mult [Int 6 ; Var "x"]]));;
- : exp = Add [Int 6; Mult [Int 6; Var "x"]]
# norm (diff "y" (Mult [Var "x"; Mult[Int 2; Exp ("y", 3)]]));;
- : exp = Mult [Int 6; Var "x"; Exp ("y", 2)]
# norm (diff "y" (Mult [Var "x"; Var "y"]));;
- : exp = Var "x"