Apache Spark简单连接导致神秘错误

时间:2018-10-08 23:27:11

标签: java apache-spark cassandra

我有两个数据集,可以分别查询和显示()。一个拥有17条记录,另一个拥有3条记录。

Dataset<Row> attReader = spark
    .read()
    .format("org.apache.spark.sql.cassandra")
    .option("table", "table_1")
    .load();

Dataset<Row> surReader = spark
    .read()
    .format("org.apache.spark.sql.cassandra")
    .option("table", "table_2")
    .load();

当我尝试加入并向他们展示时:

    Dataset<Row> joined = attReader.join(surReader,
        attReader.col("key_field").equalTo(surReader.col("key_field")), "inner");
    joined.show();

我确定这些字段是正确的,因为我可以显示各个数据集的数据并查看它们。连接字段是字符串。

我收到以下异常,但没有太多帮助:

org.apache.spark.SparkException: Exception thrown in awaitResult: 
    at org.apache.spark.util.ThreadUtils$.awaitResult(ThreadUtils.scala:205)
    at org.apache.spark.sql.execution.exchange.BroadcastExchangeExec.doExecuteBroadcast(BroadcastExchangeExec.scala:136)
    at org.apache.spark.sql.execution.InputAdapter.doExecuteBroadcast(WholeStageCodegenExec.scala:367)
    at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeBroadcast$1.apply(SparkPlan.scala:144)
    at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeBroadcast$1.apply(SparkPlan.scala:140)
    at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:155)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
    at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:152)
    at org.apache.spark.sql.execution.SparkPlan.executeBroadcast(SparkPlan.scala:140)
    at org.apache.spark.sql.execution.joins.BroadcastHashJoinExec.prepareBroadcast(BroadcastHashJoinExec.scala:135)
    at org.apache.spark.sql.execution.joins.BroadcastHashJoinExec.codegenInner(BroadcastHashJoinExec.scala:232)
    at org.apache.spark.sql.execution.joins.BroadcastHashJoinExec.doConsume(BroadcastHashJoinExec.scala:102)
    at org.apache.spark.sql.execution.CodegenSupport$class.consume(WholeStageCodegenExec.scala:181)
    at org.apache.spark.sql.execution.FilterExec.consume(basicPhysicalOperators.scala:85)
    at org.apache.spark.sql.execution.FilterExec.doConsume(basicPhysicalOperators.scala:206)
    at org.apache.spark.sql.execution.CodegenSupport$class.consume(WholeStageCodegenExec.scala:181)
    at org.apache.spark.sql.execution.RowDataSourceScanExec.consume(DataSourceScanExec.scala:77)
    at org.apache.spark.sql.execution.RowDataSourceScanExec.doProduce(DataSourceScanExec.scala:125)
    at org.apache.spark.sql.execution.CodegenSupport$$anonfun$produce$1.apply(WholeStageCodegenExec.scala:88)
    at org.apache.spark.sql.execution.CodegenSupport$$anonfun$produce$1.apply(WholeStageCodegenExec.scala:83)
    at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:155)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
    at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:152)
    at org.apache.spark.sql.execution.CodegenSupport$class.produce(WholeStageCodegenExec.scala:83)
    at org.apache.spark.sql.execution.RowDataSourceScanExec.produce(DataSourceScanExec.scala:77)
    at org.apache.spark.sql.execution.FilterExec.doProduce(basicPhysicalOperators.scala:125)
    at org.apache.spark.sql.execution.CodegenSupport$$anonfun$produce$1.apply(WholeStageCodegenExec.scala:88)
    at org.apache.spark.sql.execution.CodegenSupport$$anonfun$produce$1.apply(WholeStageCodegenExec.scala:83)
    at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:155)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
    at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:152)
    at org.apache.spark.sql.execution.CodegenSupport$class.produce(WholeStageCodegenExec.scala:83)
    at org.apache.spark.sql.execution.FilterExec.produce(basicPhysicalOperators.scala:85)
    at org.apache.spark.sql.execution.joins.BroadcastHashJoinExec.doProduce(BroadcastHashJoinExec.scala:97)
    at org.apache.spark.sql.execution.CodegenSupport$$anonfun$produce$1.apply(WholeStageCodegenExec.scala:88)
    at org.apache.spark.sql.execution.CodegenSupport$$anonfun$produce$1.apply(WholeStageCodegenExec.scala:83)
    at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:155)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
    at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:152)
    at org.apache.spark.sql.execution.CodegenSupport$class.produce(WholeStageCodegenExec.scala:83)
    at org.apache.spark.sql.execution.joins.BroadcastHashJoinExec.produce(BroadcastHashJoinExec.scala:39)
    at org.apache.spark.sql.execution.ProjectExec.doProduce(basicPhysicalOperators.scala:45)
    at org.apache.spark.sql.execution.CodegenSupport$$anonfun$produce$1.apply(WholeStageCodegenExec.scala:88)
    at org.apache.spark.sql.execution.CodegenSupport$$anonfun$produce$1.apply(WholeStageCodegenExec.scala:83)
    at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:155)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
    at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:152)
    at org.apache.spark.sql.execution.CodegenSupport$class.produce(WholeStageCodegenExec.scala:83)
    at org.apache.spark.sql.execution.ProjectExec.produce(basicPhysicalOperators.scala:35)
    at org.apache.spark.sql.execution.WholeStageCodegenExec.doCodeGen(WholeStageCodegenExec.scala:524)
    at org.apache.spark.sql.execution.WholeStageCodegenExec.doExecute(WholeStageCodegenExec.scala:576)
    at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:131)
    at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:127)
    at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:155)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
    at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:152)
    at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:127)
    at org.apache.spark.sql.execution.SparkPlan.getByteArrayRdd(SparkPlan.scala:247)
    at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:337)
    at org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:38)
    at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$collectFromPlan(Dataset.scala:3278)
    at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2489)
    at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2489)
    at org.apache.spark.sql.Dataset$$anonfun$52.apply(Dataset.scala:3259)
    at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:77)
    at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3258)
    at org.apache.spark.sql.Dataset.head(Dataset.scala:2489)
    at org.apache.spark.sql.Dataset.take(Dataset.scala:2703)
    at org.apache.spark.sql.Dataset.showString(Dataset.scala:254)
    at org.apache.spark.sql.Dataset.show(Dataset.scala:723)
    at org.apache.spark.sql.Dataset.show(Dataset.scala:682)
    at org.apache.spark.sql.Dataset.show(Dataset.scala:691)
    at com.kilonova.CassandraStream.sparkSql(CassandraStream.java:111)
    at com.kilonova.CassandraStream.init(CassandraStream.java:174)
    at com.kilonova.Main.runStream(Main.java:20)
    at com.kilonova.Main.main(Main.java:14)
Caused by: java.lang.IllegalArgumentException
    at org.apache.xbean.asm5.ClassReader.<init>(Unknown Source)
    at org.apache.xbean.asm5.ClassReader.<init>(Unknown Source)
    at org.apache.xbean.asm5.ClassReader.<init>(Unknown Source)
    at org.apache.spark.util.ClosureCleaner$.getClassReader(ClosureCleaner.scala:46)
    at org.apache.spark.util.FieldAccessFinder$$anon$3$$anonfun$visitMethodInsn$2.apply(ClosureCleaner.scala:449)
    at org.apache.spark.util.FieldAccessFinder$$anon$3$$anonfun$visitMethodInsn$2.apply(ClosureCleaner.scala:432)
    at scala.collection.TraversableLike$WithFilter$$anonfun$foreach$1.apply(TraversableLike.scala:733)
    at scala.collection.mutable.HashMap$$anon$1$$anonfun$foreach$2.apply(HashMap.scala:103)
    at scala.collection.mutable.HashMap$$anon$1$$anonfun$foreach$2.apply(HashMap.scala:103)
    at scala.collection.mutable.HashTable$class.foreachEntry(HashTable.scala:230)
    at scala.collection.mutable.HashMap.foreachEntry(HashMap.scala:40)
    at scala.collection.mutable.HashMap$$anon$1.foreach(HashMap.scala:103)
    at scala.collection.TraversableLike$WithFilter.foreach(TraversableLike.scala:732)
    at org.apache.spark.util.FieldAccessFinder$$anon$3.visitMethodInsn(ClosureCleaner.scala:432)
    at org.apache.xbean.asm5.ClassReader.a(Unknown Source)
    at org.apache.xbean.asm5.ClassReader.b(Unknown Source)
    at org.apache.xbean.asm5.ClassReader.accept(Unknown Source)
    at org.apache.xbean.asm5.ClassReader.accept(Unknown Source)
    at org.apache.spark.util.ClosureCleaner$$anonfun$org$apache$spark$util$ClosureCleaner$$clean$14.apply(ClosureCleaner.scala:262)
    at org.apache.spark.util.ClosureCleaner$$anonfun$org$apache$spark$util$ClosureCleaner$$clean$14.apply(ClosureCleaner.scala:261)
    at scala.collection.immutable.List.foreach(List.scala:381)
    at org.apache.spark.util.ClosureCleaner$.org$apache$spark$util$ClosureCleaner$$clean(ClosureCleaner.scala:261)
    at org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:159)
    at org.apache.spark.SparkContext.clean(SparkContext.scala:2299)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:2073)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:2099)
    at org.apache.spark.rdd.RDD$$anonfun$collect$1.apply(RDD.scala:945)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
    at org.apache.spark.rdd.RDD.withScope(RDD.scala:363)
    at org.apache.spark.rdd.RDD.collect(RDD.scala:944)
    at org.apache.spark.sql.execution.SparkPlan.executeCollectIterator(SparkPlan.scala:304)
    at org.apache.spark.sql.execution.exchange.BroadcastExchangeExec$$anonfun$relationFuture$1$$anonfun$apply$1.apply(BroadcastExchangeExec.scala:76)
    at org.apache.spark.sql.execution.exchange.BroadcastExchangeExec$$anonfun$relationFuture$1$$anonfun$apply$1.apply(BroadcastExchangeExec.scala:73)
    at org.apache.spark.sql.execution.SQLExecution$.withExecutionId(SQLExecution.scala:97)
    at org.apache.spark.sql.execution.exchange.BroadcastExchangeExec$$anonfun$relationFuture$1.apply(BroadcastExchangeExec.scala:72)
    at org.apache.spark.sql.execution.exchange.BroadcastExchangeExec$$anonfun$relationFuture$1.apply(BroadcastExchangeExec.scala:72)
    at scala.concurrent.impl.Future$PromiseCompletingRunnable.liftedTree1$1(Future.scala:24)
    at scala.concurrent.impl.Future$PromiseCompletingRunnable.run(Future.scala:24)
    at java.base/java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1135)
    at java.base/java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:635)
    at java.base/java.lang.Thread.run(Thread.java:844)

2 个答案:

答案 0 :(得分:1)

Spark如果其大小小于 spark.sql.autoBroadcastJoinThreshold 指定的值,则尝试广播连接中的较小表之一。默认情况下,此属性设置为10 MB。

出现此错误的原因之一是由于广播超时。此属性由 spark.sql.broadcastTimeout 控制,默认情况下设置为300秒。

要解决您的问题,您可以执行以下任一操作

  1. 通过将 spark.sql.autoBroadcastJoinThreshold 设置为-1来禁用广播。但这可能会影响查询性能。
  2. 如果要广播表,请增加超时值。

我看到了Spark没有表统计信息的情况,它可能会尝试广播联接中两个表中较大的一个。这会降低性能。您可以通过获取查询计划并找出要广播的表来确定此问题。

dataframe.queryExecution.sparkPlan

如果发现spark正在广播更大的表,则应计算该表的统计信息,以实现更好的查询优化。您可以采用以下方式之一:

  1. 通过Spark运行分析表命令。如果您使用与Spark相同的metastore运行Hive / Impala服务,则可以通过Hive运行Analyze表或通过Impala运行Compute Statistics。

  2. 可以在对该表进行联接之前对其进行缓存。这样,Spark可以即时计算表格的统计信息。

有关分析表统计信息的进一步参考:

让我知道它是否对您有帮助。

答案 1 :(得分:1)

这可能是由于JDK版本引起的。您可能没有使用JDK 8。

请检查此线程以获取更多信息。

该线程可能会有所帮助。 Spark Java IllegalArgumentException at org.apache.xbean.asm5.ClassReader