我们在Hadoop 2.7.2,Centos 7.2上有一个运行Apache Spark 2.0的集群。我们使用Spark DataFrame / DataSet API编写了一些新代码,但在写入然后将数据读取到Windows Azure存储Blob(默认HDFS位置)后,在连接上注意到错误结果。我已经能够通过群集上运行的以下代码片段来复制该问题。
case class UserDimensions(user: Long, dimension: Long, score: Double)
case class CentroidClusterScore(dimension: Long, cluster: Int, score: Double)
val dims = sc.parallelize(Array(UserDimensions(12345, 0, 1.0))).toDS
val cent = sc.parallelize(Array(CentroidClusterScore(0, 1, 1.0),CentroidClusterScore(1, 0, 1.0),CentroidClusterScore(2, 2, 1.0))).toDS
dims.show
cent.show
dims.join(cent, dims("dimension") === cent("dimension") ).show
输出
+-----+---------+-----+
| user|dimension|score|
+-----+---------+-----+
|12345| 0| 1.0|
+-----+---------+-----+
+---------+-------+-----+
|dimension|cluster|score|
+---------+-------+-----+
| 0| 1| 1.0|
| 1| 0| 1.0|
| 2| 2| 1.0|
+---------+-------+-----+
+-----+---------+-----+---------+-------+-----+
| user|dimension|score|dimension|cluster|score|
+-----+---------+-----+---------+-------+-----+
|12345| 0| 1.0| 0| 1| 1.0|
+-----+---------+-----+---------+-------+-----+
这是正确的。但是在写完和读取数据后,我们看到了这个
dims.write.mode("overwrite").save("/tmp/dims2.parquet")
cent.write.mode("overwrite").save("/tmp/cent2.parquet")
val dims2 = spark.read.load("/tmp/dims2.parquet").as[UserDimensions]
val cent2 = spark.read.load("/tmp/cent2.parquet").as[CentroidClusterScore]
dims2.show
cent2.show
dims2.join(cent2, dims2("dimension") === cent2("dimension") ).show
输出
+-----+---------+-----+
| user|dimension|score|
+-----+---------+-----+
|12345| 0| 1.0|
+-----+---------+-----+
+---------+-------+-----+
|dimension|cluster|score|
+---------+-------+-----+
| 0| 1| 1.0|
| 1| 0| 1.0|
| 2| 2| 1.0|
+---------+-------+-----+
+-----+---------+-----+---------+-------+-----+
| user|dimension|score|dimension|cluster|score|
+-----+---------+-----+---------+-------+-----+
|12345| 0| 1.0| null| null| null|
+-----+---------+-----+---------+-------+-----+
但是,使用RDD API会产生正确的结果
dims2.rdd.map( row => (row.dimension, row) ).join( cent2.rdd.map( row => (row.dimension, row) ) ).take(5)
res5: Array[(Long, (UserDimensions, CentroidClusterScore))] = Array((0,(UserDimensions(12345,0,1.0),CentroidClusterScore(0,1,1.0))))
我们已经尝试将输出格式更改为ORC而不是镶木地板,但我们看到相同的结果。在本地运行Spark 2.0而不是在群集上运行没有此问题。在Hadoop集群的主节点上以本地模式运行spark也可以。只有在YARN上运行时,我们才能看到这个问题。
这似乎与此问题非常相似:https://issues.apache.org/jira/browse/SPARK-10896